Switch to: References

Add citations

You must login to add citations.
  1. Proof theory in philosophy of mathematics.Andrew Arana - 2010 - Philosophy Compass 5 (4):336-347.
    A variety of projects in proof theory of relevance to the philosophy of mathematics are surveyed, including Gödel's incompleteness theorems, conservation results, independence results, ordinal analysis, predicativity, reverse mathematics, speed-up results, and provability logics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Truth Assignments That Differentiate Human Reasoning From Mechanistic Reasoning: The Evidence-Based Argument for Lucas' Goedelian Thesis.Bhupinder Singh Anand - 2016 - Cognitive Systems Research 40:35-45.
    We consider the argument that Tarski's classic definitions permit an intelligence---whether human or mechanistic---to admit finitary evidence-based definitions of the satisfaction and truth of the atomic formulas of the first-order Peano Arithmetic PA over the domain N of the natural numbers in two, hitherto unsuspected and essentially different, ways: (1) in terms of classical algorithmic verifiabilty; and (2) in terms of finitary algorithmic computability. We then show that the two definitions correspond to two distinctly different assignments of satisfaction and truth (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Husserl and gödel’s incompleteness theorems.Mirja Hartimo - 2017 - Review of Symbolic Logic 10 (4):638-650.
    The paper examines Husserl’s interactions with logicians in the 1930s in order to assess Husserl’s awareness of Gödel’s incompleteness theorems. While there is no mention about the results in Husserl’s known exchanges with Hilbert, Weyl, or Zermelo, the most likely source about them for Husserl is Felix Kaufmann (1895–1949). Husserl’s interactions with Kaufmann show that Husserl may have learned about the results from him, but not necessarily so. Ultimately Husserl’s reading marks on Friedrich Waismann’s Einführung in das mathematische Denken: die (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A new model construction by making a detour via intuitionistic theories III: Ultrafinitistic proofs of conservations of Σ 1 1 collection. [REVIEW]Kentaro Sato - 2023 - Annals of Pure and Applied Logic 174 (3):103207.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Bernays-Müller Debate.Günther Eder - 2023 - Hopos: The Journal of the International Society for the History of Philosophy of Science 13 (2):317-361.
    The Bernays-Müller debate was a dispute in the early 1920s between Paul Bernays and Aloys Müller regarding various philosophical issues related to “Hilbert’s program.” The debate is sometimes mentioned as a sidenote in discussions of Hilbert’s program, but there is little or no discussion of the debate itself in the secondary literature. This article aims to fill this gap and to provide a detailed analysis of the background of the debate, its contents, and the impact on its protagonists.
    Download  
     
    Export citation  
     
    Bookmark