Switch to: References

Citations of:

Predicativity

In Stewart Shapiro (ed.), Oxford Handbook of Philosophy of Mathematics and Logic. Oxford and New York: Oxford University Press. pp. 590-624 (2005)

Add citations

You must login to add citations.
  1. The Potential in Frege’s Theorem.Will Stafford - 2023 - Review of Symbolic Logic 16 (2):553-577.
    Is a logicist bound to the claim that as a matter of analytic truth there is an actual infinity of objects? If Hume’s Principle is analytic then in the standard setting the answer appears to be yes. Hodes’s work pointed to a way out by offering a modal picture in which only a potential infinity was posited. However, this project was abandoned due to apparent failures of cross-world predication. We re-explore this idea and discover that in the setting of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Many and the One: A Philosophical Study of Plural Logic.Salvatore Florio & Øystein Linnebo - 2021 - Oxford, England: Oxford University Press.
    Plural expressions found in natural languages allow us to talk about many objects simultaneously. Plural logic — a logical system that takes plurals at face value — has seen a surge of interest in recent years. This book explores its broader significance for philosophy, logic, and linguistics. What can plural logic do for us? Are the bold claims made on its behalf correct? After introducing plural logic and its main applications, the book provides a systematic analysis of the relation between (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Математизирането на историята: число и битие.Vasil Penchev - 2013 - Sofia: BAS: ISSk (IPR).
    The book is a philosophical refection on the possibility of mathematical history. Are poosible models of historical phenomena so exact as those of physical ones? Mathematical models borrowed from quantum mechanics by the meditation of its interpretations are accomodated to history. The conjecture of many-variant history, alternative history, or counterfactual history is necessary for mathematical history. Conclusions about philosophy of history are inferred.
    Download  
     
    Export citation  
     
    Bookmark  
  • The entanglement of logic and set theory, constructively.Laura Crosilla - 2022 - Inquiry: An Interdisciplinary Journal of Philosophy 65 (6).
    ABSTRACT Theories of sets such as Zermelo Fraenkel set theory are usually presented as the combination of two distinct kinds of principles: logical and set-theoretic principles. The set-theoretic principles are imposed ‘on top’ of first-order logic. This is in agreement with a traditional view of logic as universally applicable and topic neutral. Such a view of logic has been rejected by the intuitionists, on the ground that quantification over infinite domains requires the use of intuitionistic rather than classical logic. In (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Paradoxical hypodoxes.Alexandre Billon - 2019 - Synthese 196 (12):5205-5229.
    Most paradoxes of self-reference have a dual or ‘hypodox’. The Liar paradox (Lr = ‘Lr is false’) has the Truth-Teller (Tt = ‘Tt is true’). Russell’s paradox, which involves the set of sets that are not self-membered, has a dual involving the set of sets which are self-membered, etc. It is widely believed that these duals are not paradoxical or at least not as paradoxical as the paradoxes of which they are duals. In this paper, I argue that some paradox’s (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Plato's Problem: An Introduction to Mathematical Platonism.Marco Panza & Andrea Sereni - 2013 - New York: Palgrave-Macmillan. Edited by Andrea Sereni & Marco Panza.
    What is mathematics about? And if it is about some sort of mathematical reality, how can we have access to it? This is the problem raised by Plato, which still today is the subject of lively philosophical disputes. This book traces the history of the problem, from its origins to its contemporary treatment. It discusses the answers given by Aristotle, Proclus and Kant, through Frege's and Russell's versions of logicism, Hilbert's formalism, Gödel's platonism, up to the the current debate on (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Formal semantics in modern type theories with coercive subtyping.Zhaohui Luo - 2012 - Linguistics and Philosophy 35 (6):491-513.
    In the formal semantics based on modern type theories, common nouns are interpreted as types, rather than as predicates of entities as in Montague’s semantics. This brings about important advantages in linguistic interpretations but also leads to a limitation of expressive power because there are fewer operations on types as compared with those on predicates. The theory of coercive subtyping adequately extends the modern type theories and, as shown in this paper, plays a very useful role in making type theories (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • From Combinatorialism to Primitivism.Jennifer Wang - 2013 - Australasian Journal of Philosophy 91 (3):535-554.
    Many are reluctant to accept primitive modality into their fundamental picture of the world. The worry often traces to this thought: we shouldn't adopt any more primitive - that is, unexplained - notions than we need in order to explain all the features of the world, and primitive modal notions are not needed. I examine one prominent rival to modal primitivism, combinatorialism, and show that in order to account for all the modal features of the world the combinatorialist must adopt (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • On Naturalizing the Epistemology of Mathematics.Jeffrey W. Roland - 2009 - Pacific Philosophical Quarterly 90 (1):63-97.
    In this paper, I consider an argument for the claim that any satisfactory epistemology of mathematics will violate core tenets of naturalism, i.e. that mathematics cannot be naturalized. I find little reason for optimism that the argument can be effectively answered.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Philosophy of mathematics.Leon Horsten - 2008 - Stanford Encyclopedia of Philosophy.
    If mathematics is regarded as a science, then the philosophy of mathematics can be regarded as a branch of the philosophy of science, next to disciplines such as the philosophy of physics and the philosophy of biology. However, because of its subject matter, the philosophy of mathematics occupies a special place in the philosophy of science. Whereas the natural sciences investigate entities that are located in space and time, it is not at all obvious that this is also the case (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Naturalism and Mathematics.Jeffrey W. Roland - 2015 - In Kelly James Clark (ed.), The Blackwell Companion to Naturalism. Hoboken: Wiley-Blackwell. pp. 289–304.
    In this chapter, I consider some problems with naturalizing mathematics. More specifically, I consider how the two leading kinds of approach to naturalizing mathematics, to wit, Quinean indispensability‐based approaches and Maddy's Second Philosophical approach, seem to run afoul of constraints that any satisfactory naturalistic mathematics must meet. I then suggest that the failure of these kinds of approach to meet the relevant constraints indicates a general problem with naturalistic mathematics meeting these constraints, and thus with the project of naturalizing mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • El Tractatus al rescate de Principia Mathematica: Ramsey y los fundamentos logicistas de las matemáticas.Emilio Méndez Pinto - 2022 - Critica 54 (161):43-69.
    Mi objetivo es discutir las principales dificultades que Frank P. Ramsey encontró en Principia Mathematica y la solución que, vía el Tractatus Logico-Philosophicus, propuso al respecto. Sostengo que las principales dificultades que Ramsey encontró en Principia Mathematica están, todas, relacionadas con que Russell y Whitehead desatendieron la forma lógica de las proposiciones matemáticas, las cuales, según Ramsey, deben ser tautológicas.
    Download  
     
    Export citation  
     
    Bookmark  
  • In defense of Countabilism.David Builes & Jessica M. Wilson - 2022 - Philosophical Studies 179 (7):2199-2236.
    Inspired by Cantor's Theorem (CT), orthodoxy takes infinities to come in different sizes. The orthodox view has had enormous influence in mathematics, philosophy, and science. We will defend the contrary view---Countablism---according to which, necessarily, every infinite collection (set or plurality) is countable. We first argue that the potentialist or modal strategy for treating Russell's Paradox, first proposed by Parsons (2000) and developed by Linnebo (2010, 2013) and Linnebo and Shapiro (2019), should also be applied to CT, in a way that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A Paradox about Sets of Properties.Nathan Salmón - 2021 - Synthese 199 (5-6):12777-12793.
    A paradox about sets of properties is presented. The paradox, which invokes an impredicatively defined property, is formalized in a free third-order logic with lambda-abstraction, through a classically proof-theoretically valid deduction of a contradiction from a single premise to the effect that every property has a unit set. Something like a model is offered to establish that the premise is, although classically inconsistent, nevertheless consistent, so that the paradox discredits the logic employed. A resolution through the ramified theory of types (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Esistenza e Persistenza.Damiano Costa - 2018 - Milan, IT: Mimesis.
    Nel nostro universo, qualunque cosa, dalla più piccola particella alla più smisurata galassia, esiste in un qualche tempo e in un qualche luogo. Ma cosa significa esistere in un qualche tempo? Il fenomeno dell’esistenza temporale gioca un ruolo fondamentale nella comprensione dell’universo e di noi stessi quali creature temporali. Eppure è un fenomeno profondamente misterioso. L’esistenza temporale è da intendersi come una relazione? Che legami ha con l’esistenza dell’ontologia? L’esistenza temporale e la localizzazione spaziale sono due fenomeni essenzialmente differenti o (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Burgess' PV Is Robinson's Q.Mihai Ganea - 2007 - Journal of Symbolic Logic 72 (2):619 - 624.
    In [2] John Burgess describes predicative versions of Frege's logic and poses the problem of finding their exact arithmetical strength. I prove here that PV, the simplest such theory, is equivalent to Robinson's arithmetical theory Q.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • From Philosophical Traditions to Scientific Developments: Reconsidering the Response to Brouwer’s Intuitionism.Kati Kish Bar-On - 2022 - Synthese 200 (6):1–25.
    Brouwer’s intuitionistic program was an intriguing attempt to reform the foundations of mathematics that eventually did not prevail. The current paper offers a new perspective on the scientific community’s lack of reception to Brouwer’s intuitionism by considering it in light of Michael Friedman’s model of parallel transitions in philosophy and science, specifically focusing on Friedman’s story of Einstein’s theory of relativity. Such a juxtaposition raises onto the surface the differences between Brouwer’s and Einstein’s stories and suggests that contrary to Einstein’s (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Plurals and modals.Øystein Linnebo - 2016 - Canadian Journal of Philosophy 46 (4-5):654-676.
    Consider one of several things. Is the one thing necessarily one of the several? This key question in the modal logic of plurals is clarified. Some defenses of an affirmative answer are developed and compared. Various remarks are made about the broader philosophical significance of the question.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Set theory: Constructive and intuitionistic ZF.Laura Crosilla - 2010 - Stanford Encyclopedia of Philosophy.
    Constructive and intuitionistic Zermelo-Fraenkel set theories are axiomatic theories of sets in the style of Zermelo-Fraenkel set theory (ZF) which are based on intuitionistic logic. They were introduced in the 1970's and they represent a formal context within which to codify mathematics based on intuitionistic logic. They are formulated on the basis of the standard first order language of Zermelo-Fraenkel set theory and make no direct use of inherently constructive ideas. In working in constructive and intuitionistic ZF we can thus (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Problematic Nature of Gödel’s Disjunctions and Lucas-Penrose’s Theses.Arnon Avron - 2020 - Studia Semiotyczne 34 (1):83-108.
    We show that the name “Lucas-Penrose thesis” encompasses several different theses. All these theses refer to extremely vague concepts, and so are either practically meaningless, or obviously false. The arguments for the various theses, in turn, are based on confusions with regard to the meaning of these vague notions, and on unjustified hidden assumptions concerning them. All these observations are true also for all interesting versions of the much weaker thesis known as “Gö- del disjunction”. Our main conclusions are that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Implicit Commitment of Arithmetical Theories and Its Semantic Core.Carlo Nicolai & Mario Piazza - 2019 - Erkenntnis 84 (4):913-937.
    According to the implicit commitment thesis, once accepting a mathematical formal system S, one is implicitly committed to additional resources not immediately available in S. Traditionally, this thesis has been understood as entailing that, in accepting S, we are bound to accept reflection principles for S and therefore claims in the language of S that are not derivable in S itself. It has recently become clear, however, that such reading of the implicit commitment thesis cannot be compatible with well-established positions (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Epistemic optimism.Mihai Ganea - 2008 - Philosophia Mathematica 16 (3):333-353.
    Michael Dummett's argument for intuitionism can be criticized for the implicit reliance on the existence of what might be called absolutely undecidable statements. Neil Tennant attacks epistemic optimism, the view that there are no such statements. I expose what seem serious flaws in his attack, and I suggest a way of defending the use of classical logic in arithmetic that circumvents the issue of optimism. I would like to thank an anonymous referee for helpful comments. CiteULike Connotea Del.icio.us What's this?
    Download  
     
    Export citation  
     
    Bookmark  
  • Truth, Pretense and the Liar Paradox.Bradley Armour-Garb & James A. Woodbridge - 2015 - In T. Achourioti, H. Galinon, J. Martínez Fernández & K. Fujimoto (eds.), Unifying the Philosophy of Truth. Dordrecht: Imprint: Springer. pp. 339-354.
    In this paper we explain our pretense account of truth-talk and apply it in a diagnosis and treatment of the Liar Paradox. We begin by assuming that some form of deflationism is the correct approach to the topic of truth. We then briefly motivate the idea that all T-deflationists should endorse a fictionalist view of truth-talk, and, after distinguishing pretense-involving fictionalism (PIF) from error- theoretic fictionalism (ETF), explain the merits of the former over the latter. After presenting the basic framework (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)The Modal Logic of Potential Infinity: Branching Versus Convergent Possibilities.Ethan Brauer - 2020 - Erkenntnis:1-19.
    Modal logic provides an elegant way to understand the notion of potential infinity. This raises the question of what the right modal logic is for reasoning about potential infinity. In this article I identify a choice point in determining the right modal logic: Can a potentially infinite collection ever be expanded in two mutually incompatible ways? If not, then the possible expansions are convergent; if so, then the possible expansions are branching. When possible expansions are convergent, the right modal logic (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • ω-circularity of Yablo's paradox.Ahmet Çevik - forthcoming - Logic and Logical Philosophy:1.
    In this paper, we strengthen Hardy’s [1995] and Ketland’s [2005] arguments on the issues surrounding the self-referential nature of Yablo’s paradox [1993]. We first begin by observing that Priest’s [1997] construction of the binary satisfaction relation in revealing a fixed point relies on impredicative definitions. We then show that Yablo’s paradox is ‘ω-circular’, based on ω-inconsistent theories, by arguing that the paradox is not self-referential in the classical sense but rather admits circularity at the least transfinite countable ordinal. Hence, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Predicativity and Structuralism in Dedekind’s Construction of the Reals.Audrey Yap - 2009 - Erkenntnis 71 (2):157-173.
    It is a commonly held view that Dedekind's construction of the real numbers is impredicative. This naturally raises the question of whether this impredicativity is justified by some kind of Platonism about sets. But when we look more closely at Dedekind's philosophical views, his ontology does not look Platonist at all. So how is his construction justified? There are two aspects of the solution: one is to look more closely at his methodological views, and in particular, the places in which (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • If Logic, Definitions and the Vicious Circle Principle.Jaakko Hintikka - 2012 - Journal of Philosophical Logic 41 (2):505-517.
    In a definition (∀ x )(( x є r )↔D[ x ]) of the set r, the definiens D[ x ] must not depend on the definiendum r . This implies that all quantifiers in D[ x ] are independent of r and of (∀ x ). This cannot be implemented in the traditional first-order logic, but can be expressed in IF logic. Violations of such independence requirements are what created the typical paradoxes of set theory. Poincaré’s Vicious Circle Principle (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations