Switch to: References

Add citations

You must login to add citations.
  1. A refinement of the Ramsey hierarchy via indescribability.Brent Cody - 2020 - Journal of Symbolic Logic 85 (2):773-808.
    We study large cardinal properties associated with Ramseyness in which homogeneous sets are demanded to satisfy various transfinite degrees of indescribability. Sharpe and Welch [25], and independently Bagaria [1], extended the notion of $\Pi ^1_n$ -indescribability where $n<\omega $ to that of $\Pi ^1_\xi $ -indescribability where $\xi \geq \omega $. By iterating Feng’s Ramsey operator [12] on the various $\Pi ^1_\xi $ -indescribability ideals, we obtain new large cardinal hierarchies and corresponding nonlinear increasing hierarchies of normal ideals. We provide (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Ramsey-like cardinals.Victoria Gitman - 2011 - Journal of Symbolic Logic 76 (2):519 - 540.
    One of the numerous characterizations of a Ramsey cardinal κ involves the existence of certain types of elementary embeddings for transitive sets of size κ satisfying a large fragment of ZFC. We introduce new large cardinal axioms generalizing the Ramsey elementary embeddings characterization and show that they form a natural hierarchy between weakly compact cardinals and measurable cardinals. These new axioms serve to further our knowledge about the elementary embedding properties of smaller large cardinals, in particular those still consistent with (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Countable unions of simple sets in the core model.P. D. Welch - 1996 - Journal of Symbolic Logic 61 (1):293-312.
    We follow [8] in asking when a set of ordinals $X \subseteq \alpha$ is a countable union of sets in K, the core model. We show that, analogously to L, and X closed under the canonical Σ 1 Skolem function for K α can be so decomposed provided K is such that no ω-closed filters are put on its measure sequence, but not otherwise. This proviso holds if there is no inner model of a weak Erdős-type property.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Greatly Erdős cardinals with some generalizations to the Chang and Ramsey properties.I. Sharpe & P. D. Welch - 2011 - Annals of Pure and Applied Logic 162 (11):863-902.
    • We define a notion of order of indiscernibility type of a structure by analogy with Mitchell order on measures; we use this to define a hierarchy of strong axioms of infinity defined through normal filters, the α-weakly Erdős hierarchy. The filters in this hierarchy can be seen to be generated by sets of ordinals where these indiscernibility orders on structures dominate the canonical functions.• The limit axiom of this is that of greatly Erdős and we use it to calibrate (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Games and Ramsey-like cardinals.Dan Saattrup Nielsen & Philip Welch - 2019 - Journal of Symbolic Logic 84 (1):408-437.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • In memoriam: James Earl Baumgartner (1943–2011).J. A. Larson - 2017 - Archive for Mathematical Logic 56 (7):877-909.
    James Earl Baumgartner (March 23, 1943–December 28, 2011) came of age mathematically during the emergence of forcing as a fundamental technique of set theory, and his seminal research changed the way set theory is done. He made fundamental contributions to the development of forcing, to our understanding of uncountable orders, to the partition calculus, and to large cardinals and their ideals. He promulgated the use of logic such as absoluteness and elementary submodels to solve problems in set theory, he applied (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Small models, large cardinals, and induced ideals.Peter Holy & Philipp Lücke - 2021 - Annals of Pure and Applied Logic 172 (2):102889.
    We show that many large cardinal notions up to measurability can be characterized through the existence of certain filters for small models of set theory. This correspondence will allow us to obtain a canonical way in which to assign ideals to many large cardinal notions. This assignment coincides with classical large cardinal ideals whenever such ideals had been defined before. Moreover, in many important cases, relations between these ideals reflect the ordering of the corresponding large cardinal properties both under direct (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Ramsey-like cardinals II.Victoria Gitman & P. D. Welch - 2011 - Journal of Symbolic Logic 76 (2):541-560.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Two-cardinal ideal operators and indescribability.Brent Cody & Philip White - 2024 - Annals of Pure and Applied Logic 175 (8):103463.
    Download  
     
    Export citation  
     
    Bookmark  
  • Two-Cardinal Derived Topologies, Indescribability and Ramseyness.Brent Cody, Chris Lambie-Hanson & Jing Zhang - forthcoming - Journal of Symbolic Logic:1-29.
    We introduce a natural two-cardinal version of Bagaria’s sequence of derived topologies on ordinals. We prove that for our sequence of two-cardinal derived topologies, limit points of sets can be characterized in terms of a new iterated form of pairwise simultaneous reflection of certain kinds of stationary sets, the first few instances of which are often equivalent to notions related to strong stationarity, which has been studied previously in the context of strongly normal ideals. The non-discreteness of these two-cardinal derived (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Higher indescribability and derived topologies.Brent Cody - 2023 - Journal of Mathematical Logic 24 (1).
    We introduce reflection properties of cardinals in which the attributes that reflect are expressible by infinitary formulas whose lengths can be strictly larger than the cardinal under consideration. This kind of generalized reflection principle leads to the definitions of [Formula: see text]-indescribability and [Formula: see text]-indescribability of a cardinal [Formula: see text] for all [Formula: see text]. In this context, universal [Formula: see text] formulas exist, there is a normal ideal associated to [Formula: see text]-indescribability and the notions of [Formula: (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ideal Operators and Higher Indescribability.Brent Cody & Peter Holy - forthcoming - Journal of Symbolic Logic:1-39.
    We investigate properties of the ineffability and the Ramsey operator, and a common generalization of those that was introduced by the second author, with respect to higher indescribability, as introduced by the first author. This extends earlier investigations on the ineffability operator by James Baumgartner, and on the Ramsey operator by Qi Feng, by Philip Welch et al., and by the first author.
    Download  
     
    Export citation  
     
    Bookmark   2 citations