- Σ1(κ)-definable subsets of H.Philipp Lücke, Ralf Schindler & Philipp Schlicht - 2017 - Journal of Symbolic Logic 82 (3):1106-1131.details
|
|
Large cardinals need not be large in HOD.Yong Cheng, Sy-David Friedman & Joel David Hamkins - 2015 - Annals of Pure and Applied Logic 166 (11):1186-1198.details
|
|
The least weakly compact cardinal can be unfoldable, weakly measurable and nearly $${\theta}$$ θ -supercompact.Brent Cody, Moti Gitik, Joel David Hamkins & Jason A. Schanker - 2015 - Archive for Mathematical Logic 54 (5-6):491-510.details
|
|
Ramsey-like cardinals.Victoria Gitman - 2011 - Journal of Symbolic Logic 76 (2):519 - 540.details
|
|
The consistency strength of the perfect set property for universally baire sets of reals.Ralf Schindler & Trevor M. Wilson - 2022 - Journal of Symbolic Logic 87 (2):508-526.details
|
|
Small models, large cardinals, and induced ideals.Peter Holy & Philipp Lücke - 2021 - Annals of Pure and Applied Logic 172 (2):102889.details
|
|
Virtual large cardinals.Victoria Gitman & Ralf Schindler - 2018 - Annals of Pure and Applied Logic 169 (12):1317-1334.details
|
|
Indestructibility properties of Ramsey and Ramsey-like cardinals.Victoria Gitman & Thomas A. Johnstone - 2022 - Annals of Pure and Applied Logic 173 (6):103106.details
|
|
Structural Properties of the Stable Core.Sy-David Friedman, Victoria Gitman & Sandra Müller - 2023 - Journal of Symbolic Logic 88 (3):889-918.details
|
|
Easton's theorem for Ramsey and strongly Ramsey cardinals.Brent Cody & Victoria Gitman - 2015 - Annals of Pure and Applied Logic 166 (9):934-952.details
|
|
Indestructibility properties of remarkable cardinals.Yong Cheng & Victoria Gitman - 2015 - Archive for Mathematical Logic 54 (7-8):961-984.details
|
|
Generic Vopěnka’s Principle, remarkable cardinals, and the weak Proper Forcing Axiom.Joan Bagaria, Victoria Gitman & Ralf Schindler - 2017 - Archive for Mathematical Logic 56 (1-2):1-20.details
|
|
Inner models with large cardinal features usually obtained by forcing.Arthur W. Apter, Victoria Gitman & Joel David Hamkins - 2012 - Archive for Mathematical Logic 51 (3-4):257-283.details
|
|