Switch to: References

Add citations

You must login to add citations.
  1. (2 other versions)2000 Annual Meeting of the Association for Symbolic Logic.A. Pillay, D. Hallett, G. Hjorth, C. Jockusch, A. Kanamori, H. J. Keisler & V. McGee - 2000 - Bulletin of Symbolic Logic 6 (3):361-396.
    Download  
     
    Export citation  
     
    Bookmark  
  • Weak theories of nonstandard arithmetic and analysis.Jeremy Avigad - manuscript
    A general method of interpreting weak higher-type theories of nonstandard arithmetic in their standard counterparts is presented. In particular, this provides natural nonstandard conservative extensions of primitive recursive arithmetic, elementary recursive arithmetic, and polynomial-time computable arithmetic. A means of formalizing basic real analysis in such theories is sketched.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Computational Complexity Theory and the Philosophy of Mathematics†.Walter Dean - 2019 - Philosophia Mathematica 27 (3):381-439.
    Computational complexity theory is a subfield of computer science originating in computability theory and the study of algorithms for solving practical mathematical problems. Amongst its aims is classifying problems by their degree of difficulty — i.e., how hard they are to solve computationally. This paper highlights the significance of complexity theory relative to questions traditionally asked by philosophers of mathematics while also attempting to isolate some new ones — e.g., about the notion of feasibility in mathematics, the $\mathbf{P} \neq \mathbf{NP}$ (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Interpretability in Robinson's Q.Fernando Ferreira & Gilda Ferreira - 2013 - Bulletin of Symbolic Logic 19 (3):289-317.
    Edward Nelson published in 1986 a book defending an extreme formalist view of mathematics according to which there is animpassable barrierin the totality of exponentiation. On the positive side, Nelson embarks on a program of investigating how much mathematics can be interpreted in Raphael Robinson's theory of arithmetic. In the shadow of this program, some very nice logical investigations and results were produced by a number of people, not only regarding what can be interpreted inbut also what cannot be so (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Number theory and elementary arithmetic.Jeremy Avigad - 2003 - Philosophia Mathematica 11 (3):257-284.
    is a fragment of first-order aritlimetic so weak that it cannot prove the totality of an iterated exponential fimction. Surprisingly, however, the theory is remarkably robust. I will discuss formal results that show that many theorems of number theory and combinatorics are derivable in elementary arithmetic, and try to place these results in a broader philosophical context.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Bounded functional interpretation and feasible analysis.Fernando Ferreira & Paulo Oliva - 2007 - Annals of Pure and Applied Logic 145 (2):115-129.
    In this article we study applications of the bounded functional interpretation to theories of feasible arithmetic and analysis. The main results show that the novel interpretation is sound for considerable generalizations of weak König’s Lemma, even in the presence of very weak induction. Moreover, when this is combined with Cook and Urquhart’s variant of the functional interpretation, one obtains effective versions of conservation results regarding weak König’s Lemma which have been so far only obtained non-constructively.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • 2003 Annual Meeting of the Association for Symbolic Logic.Andreas Blass - 2004 - Bulletin of Symbolic Logic 10 (1):120-145.
    Download  
     
    Export citation  
     
    Bookmark  
  • Notes on Pi^1_1 Conservativity, Omega-Submodels, and the Collection Schema.Jeremy Avigad - unknown
    These are some minor notes and observations related to a paper by Cholak, Jockusch, and Slaman [3].
    Download  
     
    Export citation  
     
    Bookmark  
  • Forcing in proof theory.Jeremy Avigad - 2004 - Bulletin of Symbolic Logic 10 (3):305-333.
    Paul Cohen’s method of forcing, together with Saul Kripke’s related semantics for modal and intuitionistic logic, has had profound effects on a number of branches of mathematical logic, from set theory and model theory to constructive and categorical logic. Here, I argue that forcing also has a place in traditional Hilbert-style proof theory, where the goal is to formalize portions of ordinary mathematics in restricted axiomatic theories, and study those theories in constructive or syntactic terms. I will discuss the aspects (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • 2006 Annual Meeting of the Association for Symbolic Logic.Matthew Valeriote - 2007 - Bulletin of Symbolic Logic 13 (1):120-145.
    Download  
     
    Export citation  
     
    Bookmark  
  • Classical truth in higher types.Ulrich Berger - 2008 - Mathematical Logic Quarterly 54 (3):240-246.
    We study, from a classical point of view, how the truth of a statement about higher type functionals depends on the underlying model. The models considered are the classical set-theoretic finite type hierarchy and the constructively more meaningful models of continuous functionals, hereditarily effective operations, as well as the closed term model of Gödel's system T. The main results are characterisations of prenex classes for which truth in the full set-theoretic model transfers to truth in the other models. As a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Harrington’s conservation theorem redone.Fernando Ferreira & Gilda Ferreira - 2008 - Archive for Mathematical Logic 47 (2):91-100.
    Leo Harrington showed that the second-order theory of arithmetic WKL 0 is ${\Pi^1_1}$ -conservative over the theory RCA 0. Harrington’s proof is model-theoretic, making use of a forcing argument. A purely proof-theoretic proof, avoiding forcing, has been eluding the efforts of researchers. In this short paper, we present a proof of Harrington’s result using a cut-elimination argument.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Groundwork for weak analysis.António M. Fernandes & Fernando Ferreira - 2002 - Journal of Symbolic Logic 67 (2):557-578.
    This paper develops the very basic notions of analysis in a weak second-order theory of arithmetic BTFA whose provably total functions are the polynomial time computable functions. We formalize within BTFA the real number system and the notion of a continuous real function of a real variable. The theory BTFA is able to prove the intermediate value theorem, wherefore it follows that the system of real numbers is a real closed ordered field. In the last section of the paper, we (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Counting as integration in feasible analysis.Fernando Ferreira & Gilda Ferreira - 2006 - Mathematical Logic Quarterly 52 (3):315-320.
    Suppose that it is possible to integrate real functions over a weak base theory related to polynomial time computability. Does it follow that we can count? The answer seems to be: obviously yes! We try to convince the reader that the severe restrictions on induction in feasible theories preclude a straightforward answer. Nevertheless, a more sophisticated reflection does indeed show that the answer is affirmative.
    Download  
     
    Export citation  
     
    Bookmark  
  • Bounded functional interpretation.Fernando Ferreira & Paulo Oliva - 2005 - Annals of Pure and Applied Logic 135 (1):73-112.
    We present a new functional interpretation, based on a novel assignment of formulas. In contrast with Gödel’s functional “Dialectica” interpretation, the new interpretation does not care for precise witnesses of existential statements, but only for bounds for them. New principles are supported by our interpretation, including the FAN theorem, weak König’s lemma and the lesser limited principle of omniscience. Conspicuous among these principles are also refutations of some laws of classical logic. Notwithstanding, we end up discussing some applications of the (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Strict $${\Pi^1_1}$$ -reflection in bounded arithmetic.António M. Fernandes - 2010 - Archive for Mathematical Logic 49 (1):17-34.
    We prove two conservation results involving a generalization of the principle of strict ${\Pi^1_1}$ -reflection, in the context of bounded arithmetic. In this context a separation between the concepts of bounded set and binary sequence seems to emerge as fundamental.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • About and Around Computing Over the Reals.Solomon Feferman - unknown
    1. One theory or many? In 2004 a very interesting and readable article by Lenore Blum, entitled “Computing over the reals: Where Turing meets Newton,” appeared in the Notices of the American Mathematical Society. It explained a basic model of computation over the reals due to Blum, Michael Shub and Steve Smale (1989), subsequently exposited at length in their influential book, Complexity and Real Computation (1997), coauthored with Felipe Cucker. The ‘Turing’ in the title of Blum’s article refers of course (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Mathematically strong subsystems of analysis with low rate of growth of provably recursive functionals.Ulrich Kohlenbach - 1996 - Archive for Mathematical Logic 36 (1):31-71.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Unifying Functional Interpretations.Paulo Oliva - 2006 - Notre Dame Journal of Formal Logic 47 (2):263-290.
    This article presents a parametrized functional interpretation. Depending on the choice of two parameters one obtains well-known functional interpretations such as Gödel's Dialectica interpretation, Diller-Nahm's variant of the Dialectica interpretation, Kohlenbach's monotone interpretations, Kreisel's modified realizability, and Stein's family of functional interpretations. A functional interpretation consists of a formula interpretation and a soundness proof. I show that all these interpretations differ only on two design choices: first, on the number of counterexamples for A which became witnesses for ¬A when defining (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations