Switch to: References

Add citations

You must login to add citations.
  1. 40 years of FDE: An Introductory Overview.Hitoshi Omori & Heinrich Wansing - 2017 - Studia Logica 105 (6):1021-1049.
    In this introduction to the special issue “40 years of FDE”, we offer an overview of the field and put the papers included in the special issue into perspective. More specifically, we first present various semantics and proof systems for FDE, and then survey some expansions of FDE by adding various operators starting with constants. We then turn to unary and binary connectives, which are classified in a systematic manner. First-order FDE is also briefly revisited, and we conclude by listing (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • On a Four-Valued Logic of Formal Inconsistency and Formal Undeterminedness.Marcelo E. Coniglio, G. T. Gomez–Pereira & Martín Figallo - forthcoming - Studia Logica:1-42.
    Belnap–Dunn’s relevance logic, \(\textsf{BD}\), was designed seeking a suitable logical device for dealing with multiple information sources which sometimes may provide inconsistent and/or incomplete pieces of information. \(\textsf{BD}\) is a four-valued logic which is both paraconsistent and paracomplete. On the other hand, De and Omori, while investigating what classical negation amounts to in a paracomplete and paraconsistent four-valued setting, proposed the expansion \(\textsf{BD2}\) of the four valued Belnap–Dunn logic by a classical negation. In this paper, we introduce a four-valued expansion (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the logic that preserves degrees of truth associated to involutive Stone algebras.Liliana M. Cantú & Martín Figallo - 2020 - Logic Journal of the IGPL 28 (5):1000-1020.
    Involutive Stone algebras were introduced by R. Cignoli and M. Sagastume in connection to the theory of $n$-valued Łukasiewicz–Moisil algebras. In this work we focus on the logic that preserves degrees of truth associated to S-algebras named Six. This follows a very general pattern that can be considered for any class of truth structure endowed with an ordering relation, and which intends to exploit many-valuedness focusing on the notion of inference that results from preserving lower bounds of truth values, and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Kripke-Completeness and Sequent Calculus for Quasi-Boolean Modal Logic.Minghui Ma & Juntong Guo - forthcoming - Studia Logica:1-30.
    Quasi-Boolean modal algebras are quasi-Boolean algebras with a modal operator satisfying the interaction axiom. Sequential quasi-Boolean modal logics and the relational semantics are introduced. Kripke-completeness for some quasi-Boolean modal logics is shown by the canonical model method. We show that every descriptive persistent quasi-Boolean modal logic is canonical. The finite model property of some quasi-Boolean modal logics is proved. A cut-free Gentzen sequent calculus for the minimal quasi-Boolean logic is developed and we show that it has the Craig interpolation property.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Closure Properties of the Class of Full G-models of a Deductive System.Josep Maria Font, Ramon Jansana & Don Pigozzi - 2006 - Studia Logica 83 (1-3):215-278.
    In this paper we consider the structure of the class FGModS of full generalized models of a deductive system S from a universal-algebraic point of view, and the structure of the set of all the full generalized models of S on a fixed algebra A from the lattice-theoretical point of view; this set is represented by the lattice FACSs A of all algebraic closed-set systems C on A such that (A, C) ε FGModS. We relate some properties of these structures (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Cut-free Sequent Calculus and Natural Deduction for the Tetravalent Modal Logic.Martín Figallo - 2021 - Studia Logica 109 (6):1347-1373.
    The tetravalent modal logic is one of the two logics defined by Font and Rius :481–518, 2000) in connection with Monteiro’s tetravalent modal algebras. These logics are expansions of the well-known Belnap–Dunn’s four-valued logic that combine a many-valued character with a modal character. In fact, $${\mathcal {TML}}$$ TML is the logic that preserves degrees of truth with respect to tetravalent modal algebras. As Font and Rius observed, the connection between the logic $${\mathcal {TML}}$$ TML and the algebras is not so (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Strengthening Brady’s Paraconsistent 4-Valued Logic BN4 with Truth-Functional Modal Operators.José M. Méndez & Gemma Robles - 2016 - Journal of Logic, Language and Information 25 (2):163-189.
    Łukasiewicz presented two different analyses of modal notions by means of many-valued logics: the linearly ordered systems Ł3,..., Open image in new window,..., \; the 4-valued logic Ł he defined in the last years of his career. Unfortunately, all these systems contain “Łukasiewicz type paradoxes”. On the other hand, Brady’s 4-valued logic BN4 is the basic 4-valued bilattice logic. The aim of this paper is to show that BN4 can be strengthened with modal operators following Łukasiewicz’s strategy for defining truth-functional (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On Monadic Operators on Modal Pseudocomplemented De Morgan Algebras and Tetravalent Modal Algebras.Aldo Figallo Orellano & Inés Pascual - 2019 - Studia Logica 107 (4):591-611.
    In our paper, monadic modal pseudocomplemented De Morgan algebras are considered following Halmos’ studies on monadic Boolean algebras. Hence, their topological representation theory is used successfully. Lattice congruences of an mmpM is characterized and the variety of mmpMs is proven semisimple via topological representation. Furthermore and among other things, the poset of principal congruences is investigated and proven to be a Boolean algebra; therefore, every principal congruence is a Boolean congruence. All these conclusions contrast sharply with known results for monadic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Paraconsistent and Paracomplete Logics Based on k-Cyclic Modal Pseudocomplemented De Morgan Algebras.Aldo Figallo-Orellano, Miguel Peréz-Gaspar & Juan Manuel Ramírez-Contreras - 2022 - Studia Logica 110 (5):1291-1325.
    The study of the theory of operators over modal pseudocomplemented De Morgan algebras was begun in papers [20] and [21]. In this paper, we introduce and study the class of modal pseudocomplemented De Morgan algebras enriched by a k-periodic automorphism -algebras). We denote by \ the automorphism where k is a positive integer. For \, the class coincides with the one studied in [20] where the automorphism works as a new unary operator which can be considered as a negation. In (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Symmetric operators on modal pseudocomplemented De Morgan algebras.Aldo Figallo-Orellano, Alicia Ziliani & Martín Figallo - 2017 - Logic Journal of the IGPL 25 (4):496-511.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Classical Modal De Morgan Algebras.Sergio A. Celani - 2011 - Studia Logica 98 (1-2):251-266.
    In this note we introduce the variety $${{\mathcal C}{\mathcal D}{\mathcal M}_\square}$$ of classical modal De Morgan algebras as a generalization of the variety $${{{\mathcal T}{\mathcal M}{\mathcal A}}}$$ of Tetravalent Modal algebras studied in [ 11 ]. We show that the variety $${{\mathcal V}_0}$$ defined by H. P. Sankappanavar in [ 13 ], and the variety S of Involutive Stone algebras introduced by R. Cignoli and M. S de Gallego in [ 5 ], are examples of classical modal De Morgan algebras. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Hilbert-style Presentations of Two Logics Associated to Tetravalent Modal Algebras.Marcelo E. Coniglio & Martín Figallo - 2014 - Studia Logica 102 (3):525-539.
    We analyze the variety of A. Monteiro’s tetravalent modal algebras under the perspective of two logic systems naturally associated to it. Taking profit of the contrapositive implication introduced by A. Figallo and P. Landini, sound and complete Hilbert-style calculi for these logics are presented.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A New Algebraic Version of Monteiro’s Four-Valued Propositional Calculus.Aldo Victorio Figallo, Estela Bianco & Alicia Ziliani - 2014 - Open Journal of Philosophy 4 (3):319-331.
    Download  
     
    Export citation  
     
    Bookmark