Switch to: References

Add citations

You must login to add citations.
  1. Constructive Logic with Strong Negation is a Substructural Logic. II.M. Spinks & R. Veroff - 2008 - Studia Logica 89 (3):401-425.
    The goal of this two-part series of papers is to show that constructive logic with strong negation N is definitionally equivalent to a certain axiomatic extension NFL ew of the substructural logic FL ew. The main result of Part I of this series [41] shows that the equivalent variety semantics of N and the equivalent variety semantics of NFL ew are term equivalent. In this paper, the term equivalence result of Part I [41] is lifted to the setting of deductive (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Selfextensional Logics with a Conjunction.Ramon Jansana - 2006 - Studia Logica 84 (1):63-104.
    A logic is selfextensional if its interderivability (or mutual consequence) relation is a congruence relation on the algebra of formulas. In the paper we characterize the selfextensional logics with a conjunction as the logics that can be defined using the semilattice order induced by the interpretation of the conjunction in the algebras of their algebraic counterpart. Using the charactrization we provide simpler proofs of several results on selfextensional logics with a conjunction obtained in [13] using Gentzen systems. We also obtain (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Logic may be simple. Logic, congruence and algebra.Jean-Yves Béziau - 1997 - Logic and Logical Philosophy 5:129-147.
    This paper is an attempt to clear some philosophical questions about the nature of logic by setting up a mathematical framework. The notion of congruence in logic is defined. A logical structure in which there is no non-trivial congruence relation, like some paraconsistent logics, is called simple. The relations between simplicity, the replacement theorem and algebraization of logic are studied (including MacLane-Curry’s theorem and a discussion about Curry’s algebras). We also examine how these concepts are related to such notions as (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • An infinity of super-Belnap logics.Umberto Rivieccio - 2012 - Journal of Applied Non-Classical Logics 22 (4):319-335.
    We look at extensions (i.e., stronger logics in the same language) of the Belnap–Dunn four-valued logic. We prove the existence of a countable chain of logics that extend the Belnap–Dunn and do not coincide with any of the known extensions (Kleene’s logics, Priest’s logic of paradox). We characterise the reduced algebraic models of these new logics and prove a completeness result for the first and last element of the chain stating that both logics are determined by a single finite logical (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Constructible models of orthomodular quantum logics.Piotr Wilczek - unknown
    We continue in this article the abstract algebraic treatment of quantum sentential logics Wil. The Notions borrowed from the field of Model Theory and Abstract Algebraic Logic - AAL (i.e., consequence relation, variety, logical matrix, deductive filter, reduced product, ultraproduct, ultrapower, Frege relation, Leibniz congruence, Suszko congruence, Leibniz operator) are applied to quantum logics. We also proved several equivalences between state property systems (Jauch-Piron-Aerts line of investigations) and AAL treatment of quantum logics (corollary 18 and 19). We show that there (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Paraconsistent Logic: Consistency, Contradiction and Negation.Walter Carnielli & Marcelo Esteban Coniglio - 2016 - Basel, Switzerland: Springer International Publishing. Edited by Marcelo Esteban Coniglio.
    This book is the first in the field of paraconsistency to offer a comprehensive overview of the subject, including connections to other logics and applications in information processing, linguistics, reasoning and argumentation, and philosophy of science. It is recommended reading for anyone interested in the question of reasoning and argumentation in the presence of contradictions, in semantics, in the paradoxes of set theory and in the puzzling properties of negation in logic programming. Paraconsistent logic comprises a major logical theory and (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Leibniz-linked Pairs of Deductive Systems.Josep Maria Font & Ramon Jansana - 2011 - Studia Logica 99 (1-3):171-202.
    A pair of deductive systems (S,S’) is Leibniz-linked when S’ is an extension of S and on every algebra there is a map sending each filter of S to a filter of S’ with the same Leibniz congruence. We study this generalization to arbitrary deductive systems of the notion of the strong version of a protoalgebraic deductive system, studied in earlier papers, and of some results recently found for particular non-protoalgebraic deductive systems. The necessary examples and counterexamples found in the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The semantic isomorphism theorem in abstract algebraic logic.Tommaso Moraschini - 2016 - Annals of Pure and Applied Logic 167 (12):1298-1331.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Almost structural completeness; an algebraic approach.Wojciech Dzik & Michał M. Stronkowski - 2016 - Annals of Pure and Applied Logic 167 (7):525-556.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • On Special Implicative Filters.Josep Maria Font - 1999 - Mathematical Logic Quarterly 45 (1):117-126.
    In her well-known book, Rasiowa states without proof that in implicative algebras there is a one-to-one correspondence between kernels of epimorphisms and the so-called special implicative filters, and that in the logic whose algebraic counterpart is the class of implicative algebras the deductive filters coincide with the special implicative filters. We show that neither claim is true, and how to repair the situation by redefining some of the notions involved. We answer other questions concerning special implicative filters, taking the theory (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Cut Elimination, Identity Elimination, and Interpolation in Super-Belnap Logics.Adam Přenosil - 2017 - Studia Logica 105 (6):1255-1289.
    We develop a Gentzen-style proof theory for super-Belnap logics, expanding on an approach initiated by Pynko. We show that just like substructural logics may be understood proof-theoretically as logics which relax the structural rules of classical logic but keep its logical rules as well as the rules of Identity and Cut, super-Belnap logics may be seen as logics which relax Identity and Cut but keep the logical rules as well as the structural rules of classical logic. A generalization of the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On Magari's concept of general calculus: notes on the history of tarski's methodology of deductive sciences.S. Roberto Arpaia - 2006 - History and Philosophy of Logic 27 (1):9-41.
    This paper is an historical study of Tarski's methodology of deductive sciences (in which a logic S is identified with an operator Cn S, called the consequence operator, on a given set of expressions), from its appearance in 1930 to the end of the 1970s, focusing on the work done in the field by Roberto Magari, Piero Mangani and by some of their pupils between 1965 and 1974, and comparing it with the results achieved by Tarski and the Polish school (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the complexity of the Leibniz hierarchy.Tommaso Moraschini - 2019 - Annals of Pure and Applied Logic 170 (7):805-824.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A study of truth predicates in matrix semantics.Tommaso Moraschini - 2018 - Review of Symbolic Logic 11 (4):780-804.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On substructural logics preserving degrees of truth.Josep Maria Font - 2007 - Bulletin of the Section of Logic 36 (3/4):117-129.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Algorithmic correspondence and canonicity for non-distributive logics.Willem Conradie & Alessandra Palmigiano - 2019 - Annals of Pure and Applied Logic 170 (9):923-974.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • An Approach to Glivenko’s Theorem in Algebraizable Logics.Antoni Torrens - 2008 - Studia Logica 88 (3):349-383.
    In a classical paper [15] V. Glivenko showed that a proposition is classically demonstrable if and only if its double negation is intuitionistically demonstrable. This result has an algebraic formulation: the double negation is a homomorphism from each Heyting algebra onto the Boolean algebra of its regular elements. Versions of both the logical and algebraic formulations of Glivenko’s theorem, adapted to other systems of logics and to algebras not necessarily related to logic can be found in the literature (see [2, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Interpolation and amalgamation; pushing the limits. Part I.Judit X. Madarász - 1998 - Studia Logica 61 (3):311-345.
    Continuing work initiated by Jónsson, Daigneault, Pigozzi and others; Maksimova proved that a normal modal logic (with a single unary modality) has the Craig interpolation property iff the corresponding class of algebras has the superamalgamation property (cf. [Mak 91], [Mak 79]). The aim of this paper is to extend the latter result to a large class of logics. We will prove that the characterization can be extended to all algebraizable logics containing Boolean fragment and having a certain kind of local (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (3 other versions)Categorical abstract algebraic logic: Equivalent institutions.George Voutsadakis - 2003 - Studia Logica 74 (1-2):275 - 311.
    A category theoretic generalization of the theory of algebraizable deductive systems of Blok and Pigozzi is developed. The theory of institutions of Goguen and Burstall is used to provide the underlying framework which replaces and generalizes the universal algebraic framework based on the notion of a deductive system. The notion of a term -institution is introduced first. Then the notions of quasi-equivalence, strong quasi-equivalence and deductive equivalence are defined for -institutions. Necessary and sufficient conditions are given for the quasi-equivalence and (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Logics of left variable inclusion and Płonka sums of matrices.S. Bonzio, T. Moraschini & M. Pra Baldi - 2020 - Archive for Mathematical Logic (1):49-76.
    The paper aims at studying, in full generality, logics defined by imposing a variable inclusion condition on a given logic $$\vdash $$. We prove that the description of the algebraic counterpart of the left variable inclusion companion of a given logic $$\vdash $$ is related to the construction of Płonka sums of the matrix models of $$\vdash $$. This observation allows to obtain a Hilbert-style axiomatization of the logics of left variable inclusion, to describe the structure of their reduced models, (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Don Pigozzi on Abstract Algebraic Logic, Universal Algebra, and Computer Science.Janusz Czelakowski (ed.) - 2018 - Cham, Switzerland: Springer Verlag.
    This book celebrates the work of Don Pigozzi on the occasion of his 80th birthday. In addition to articles written by leading specialists and his disciples, it presents Pigozzi’s scientific output and discusses his impact on the development of science. The book both catalogues his works and offers an extensive profile of Pigozzi as a person, sketching the most important events, not only related to his scientific activity, but also from his personal life. It reflects Pigozzi's contribution to the rise (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Nothing but the Truth.Andreas Pietz & Umberto Rivieccio - 2013 - Journal of Philosophical Logic 42 (1):125-135.
    A curious feature of Belnap’s “useful four-valued logic”, also known as first-degree entailment (FDE), is that the overdetermined value B (both true and false) is treated as a designated value. Although there are good theoretical reasons for this, it seems prima facie more plausible to have only one of the four values designated, namely T (exactly true). This paper follows this route and investigates the resulting logic, which we call Exactly True Logic.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Possible Worlds in Use.Andrzej Indrzejczak - 2011 - Studia Logica 99 (1-3):229-248.
    The paper is a brief survey of the most important semantic constructions founded on the concept of possible world. It is impossible to capture in one short paper the whole variety of the problems connected with manifold applications of possible worlds. Hence, after a brief explanation of some philosophical matters I take a look at possible worlds from rather technical standpoint of logic and focus on the applications in formal semantics. In particular, I would like to focus on the fruitful (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Epimorphism surjectivity in varieties of Heyting algebras.T. Moraschini & J. J. Wannenburg - 2020 - Annals of Pure and Applied Logic 171 (9):102824.
    It was shown recently that epimorphisms need not be surjective in a variety K of Heyting algebras, but only one counter-example was exhibited in the literature until now. Here, a continuum of such examples is identified, viz. the variety generated by the Rieger-Nishimura lattice, and all of its (locally finite) subvarieties that contain the original counter-example K . It is known that, whenever a variety of Heyting algebras has finite depth, then it has surjective epimorphisms. In contrast, we show that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Canonical extensions for congruential logics with the deduction theorem.Mai Gehrke, Ramon Jansana & Alessandra Palmigiano - 2010 - Annals of Pure and Applied Logic 161 (12):1502-1519.
    We introduce a new and general notion of canonical extension for algebras in the algebraic counterpart of any finitary and congruential logic . This definition is logic-based rather than purely order-theoretic and is in general different from the definition of canonical extensions for monotone poset expansions, but the two definitions agree whenever the algebras in are based on lattices. As a case study on logics purely based on implication, we prove that the varieties of Hilbert and Tarski algebras are canonical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Suszko operator relative to truth‐equational logics.Hugo Albuquerque - 2021 - Mathematical Logic Quarterly 67 (2):226-240.
    This note presents some new results from [1] about the Suszko operator and truth‐equational logics, following the works of Czelakowski [11] and Raftery [17]. It is proved that the Suszko operator relative to a truth‐equational logic preserves suprema and commutes with endomorphisms. Together with injectivity, proved by Raftery in [17], the Suszko operator relative to a truth‐equational logic is a structural representation, as defined in [15]. Furthermore, if is a quasivariety, then the Suszko operator relative to a truth‐equational logic is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A computational glimpse at the Leibniz and Frege hierarchies.Tommaso Moraschini - 2018 - Annals of Pure and Applied Logic 169 (1):1-20.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Selfextensional logics with a distributive nearlattice term.Luciano J. González - 2019 - Archive for Mathematical Logic 58 (1-2):219-243.
    We define when a ternary term m of an algebraic language \ is called a distributive nearlattice term -term) of a sentential logic \. Distributive nearlattices are ternary algebras generalising Tarski algebras and distributive lattices. We characterise the selfextensional logics with a \-term through the interpretation of the DN-term in the algebras of the algebraic counterpart of the logics. We prove that the canonical class of algebras associated with a selfextensional logic with a \-term is a variety, and we obtain (...)
    Download  
     
    Export citation  
     
    Bookmark