Switch to: References

Add citations

You must login to add citations.
  1. A Sound and Complete Tableaux Calculus for Reichenbach’s Quantum Mechanics Logic.Pablo Caballero & Pablo Valencia - 2024 - Journal of Philosophical Logic 53 (1):223-245.
    In 1944 Hans Reichenbach developed a three-valued propositional logic (RQML) in order to account for certain causal anomalies in quantum mechanics. In this logic, the truth-value _indeterminate_ is assigned to those statements describing physical phenomena that cannot be understood in causal terms. However, Reichenbach did not develop a deductive calculus for this logic. The aim of this paper is to develop such a calculus by means of First Degree Entailment logic (FDE) and to prove it sound and complete with respect (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Value of the One Value: Exactly True Logic revisited.Andreas Kapsner & Umberto Rivieccio - 2023 - Journal of Philosophical Logic 52 (5):1417-1444.
    In this paper we re-assess the philosophical foundation of Exactly True Logic ($$\mathcal {ET\!L}$$ ET L ), a competing variant of First Degree Entailment ($$\mathcal {FDE}$$ FDE ). In order to do this, we first rebut an argument against it. As the argument appears in an interview with Nuel Belnap himself, one of the fathers of $$\mathcal {FDE}$$ FDE, we believe its provenance to be such that it needs to be taken seriously. We submit, however, that the argument ultimately fails, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Finite axiomatizability of logics of distributive lattices with negation.Sérgio Marcelino & Umberto Rivieccio - forthcoming - Logic Journal of the IGPL.
    This paper focuses on order-preserving logics defined from varieties of distributive lattices with negation, and in particular on the problem of whether these can be axiomatized by means Hilbert-style calculi that are finite. On the negative side, we provide a syntactic condition on the equational presentation of a variety that entails failure of finite axiomatizability for the corresponding logic. An application of this result is that the logic of all distributive lattices with negation is not finitely axiomatizable; we likewise establish (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Lattice of Super-Belnap Logics.Adam Přenosil - 2023 - Review of Symbolic Logic 16 (1):114-163.
    We study the lattice of extensions of four-valued Belnap–Dunn logic, called super-Belnap logics by analogy with superintuitionistic logics. We describe the global structure of this lattice by splitting it into several subintervals, and prove some new completeness theorems for super-Belnap logics. The crucial technical tool for this purpose will be the so-called antiaxiomatic (or explosive) part operator. The antiaxiomatic (or explosive) extensions of Belnap–Dunn logic turn out to be of particular interest owing to their connection to graph theory: the lattice (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • 40 years of FDE: An Introductory Overview.Hitoshi Omori & Heinrich Wansing - 2017 - Studia Logica 105 (6):1021-1049.
    In this introduction to the special issue “40 years of FDE”, we offer an overview of the field and put the papers included in the special issue into perspective. More specifically, we first present various semantics and proof systems for FDE, and then survey some expansions of FDE by adding various operators starting with constants. We then turn to unary and binary connectives, which are classified in a systematic manner. First-order FDE is also briefly revisited, and we conclude by listing (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • First-Degree Entailment and its Relatives.Yaroslav Shramko, Dmitry Zaitsev & Alexander Belikov - 2017 - Studia Logica 105 (6):1291-1317.
    We consider a family of logical systems for representing entailment relations of various kinds. This family has its root in the logic of first-degree entailment formulated as a binary consequence system, i.e. a proof system dealing with the expressions of the form \, where both \ and \ are single formulas. We generalize this approach by constructing consequence systems that allow manipulating with sets of formulas, either to the right or left of the turnstile. In this way, it is possible (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • An Algebraic View of Super-Belnap Logics.Hugo Albuquerque, Adam Přenosil & Umberto Rivieccio - 2017 - Studia Logica 105 (6):1051-1086.
    The Belnap–Dunn logic is a well-known and well-studied four-valued logic, but until recently little has been known about its extensions, i.e. stronger logics in the same language, called super-Belnap logics here. We give an overview of several results on these logics which have been proved in recent works by Přenosil and Rivieccio. We present Hilbert-style axiomatizations, describe reduced matrix models, and give a description of the lattice of super-Belnap logics and its connections with graph theory. We adopt the point of (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Between Hilbert and Gentzen: four-valued consequence systems and structural reasoning.Yaroslav Shramko - 2022 - Archive for Mathematical Logic 61 (5):627-651.
    Structural reasoning is simply reasoning that is governed exclusively by structural rules. In this context a proof system can be said to be structural if all of its inference rules are structural. A logic is considered to be structuralizable if it can be equipped with a sound and complete structural proof system. This paper provides a general formulation of the problem of structuralizability of a given logic, giving specific consideration to a family of logics that are based on the Dunn–Belnap (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbert-style axiomatization of first-degree entailment and a family of its extensions.Yaroslav Shramko - 2021 - Annals of Pure and Applied Logic 172 (9):103011.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Explicating Logical Independence.Lloyd Humberstone - 2020 - Journal of Philosophical Logic 49 (1):135-218.
    Accounts of logical independence which coincide when applied in the case of classical logic diverge elsewhere, raising the question of what a satisfactory all-purpose account of logical independence might look like. ‘All-purpose’ here means: working satisfactorily as applied across different logics, taken as consequence relations. Principal candidate characterizations of independence relative to a consequence relation are that there the consequence relation concerned is determined by only by classes of valuations providing for all possible truth-value combinations for the formulas whose independence (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Strong Version of a Sentential Logic.Ramon Jansana, Josep Maria Font & Hugo Albuquerque - 2017 - Studia Logica 105 (4):703-760.
    This paper explores a notion of “the strong version” of a sentential logic S, initially defined in terms of the notion of a Leibniz filter, and shown to coincide with the logic determined by the matrices of S whose filter is the least S-filter in the algebra of the matrix. The paper makes a general study of this notion, which appears to unify under an abstract framework the relationships between many pairs of logics in the literature. The paradigmatic examples are (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Cut Elimination, Identity Elimination, and Interpolation in Super-Belnap Logics.Adam Přenosil - 2017 - Studia Logica 105 (6):1255-1289.
    We develop a Gentzen-style proof theory for super-Belnap logics, expanding on an approach initiated by Pynko. We show that just like substructural logics may be understood proof-theoretically as logics which relax the structural rules of classical logic but keep its logical rules as well as the rules of Identity and Cut, super-Belnap logics may be seen as logics which relax Identity and Cut but keep the logical rules as well as the structural rules of classical logic. A generalization of the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Countably Many Weakenings of Belnap–Dunn Logic.Minghui Ma & Yuanlei Lin - 2020 - Studia Logica 108 (2):163-198.
    Every Berman’s variety \ which is the subvariety of Ockham algebras defined by the equation \ and \) determines a finitary substitution invariant consequence relation \. A sequent system \ is introduced as an axiomatization of the consequence relation \. The system \ is characterized by a single finite frame \ under the frame semantics given for the formal language. By the duality between frames and algebras, \ can be viewed as a \-valued logic as it is characterized by a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Four-Valued Logics of Truth, Nonfalsity, Exact Truth, and Material Equivalence.Adam Přenosil - 2020 - Notre Dame Journal of Formal Logic 61 (4):601-621.
    The four-valued semantics of Belnap–Dunn logic, consisting of the truth values True, False, Neither, and Both, gives rise to several nonclassical logics depending on which feature of propositions we wish to preserve: truth, nonfalsity, or exact truth. Interpreting equality of truth values in this semantics as material equivalence of propositions, we can moreover see the equational consequence relation of this four-element algebra as a logic of material equivalence. In this paper, we axiomatize all combinations of these four-valued logics, for example, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Deterministic Weakening of Belnap–Dunn Logic.Minghui Ma & Yuanlei Lin - 2019 - Studia Logica 107 (2):283-312.
    A deterministic weakening \ of the Belnap–Dunn four-valued logic \ is introduced to formalize the acceptance and rejection of a proposition at a state in a linearly ordered informational frame with persistent valuations. The logic \ is formalized as a sequent calculus. The completeness and decidability of \ with respect to relational semantics are shown in terms of normal forms. From an algebraic perspective, the class of all algebras for \ is described, and found to be a subvariety of Berman’s (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Locally Tabular $$ne $$ Locally Finite.Sérgio Marcelino & Umberto Rivieccio - 2017 - Logica Universalis 11 (3):383-400.
    We show that for an arbitrary logic being locally tabular is a strictly weaker property than being locally finite. We describe our hunt for a logic that allows us to separate the two properties, revealing weaker and weaker conditions under which they must coincide, and showing how they are intertwined. We single out several classes of logics where the two notions coincide, including logics that are determined by a finite set of finite matrices, selfextensional logics, algebraizable and equivalential logics. Furthermore, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Fmla-Fmla Axiomatizations of the Exactly True and Non-falsity Logics and Some of Their Cousins.Yaroslav Shramko, Dmitry Zaitsev & Alexander Belikov - 2019 - Journal of Philosophical Logic 48 (5):787-808.
    In this paper we present a solution of the axiomatization problem for the Fmla-Fmla versions of the Pietz and Rivieccio exactly true logic and the non-falsity logic dual to it. To prove the completeness of the corresponding binary consequence systems we introduce a specific proof-theoretic formalism, which allows us to deal simultaneously with two consequence relations within one logical system. These relations are hierarchically organized, so that one of them is treated as the basic for the resulting logic, and the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Logics of upsets of De Morgan lattices.Adam Přenosil - forthcoming - Mathematical Logic Quarterly.
    We study logics determined by matrices consisting of a De Morgan lattice with an upward closed set of designated values, such as the logic of non‐falsity preservation in a given finite Boolean algebra and Shramko's logic of non‐falsity preservation in the four‐element subdirectly irreducible De Morgan lattice. The key tool in the study of these logics is the lattice‐theoretic notion of an n‐filter. We study the logics of all (complete, consistent, and classical) n‐filters on De Morgan lattices, which are non‐adjunctive (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Editorial Introduction.Francesco Paoli & Gavin St John - 2024 - Studia Logica 112 (6):1201-1214.
    This is the Editorial Introduction to “S.I.: Strong and Weak Kleene Logics”.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the set of intermediate logics between the truth- and degree-preserving Łukasiewicz logics.Marcelo E. Coniglio, Francesc Esteva & Lluís Godo - 2016 - Logic Journal of the IGPL 24 (3):288-320.
    The aim of this article is to explore the class of intermediate logics between the truth-preserving Lukasiewicz logic L and its degree-preserving companion L<⁠. From a syntactical point of view, we introduce some families of inference rules (that generalize the explosion rule) that are admissible in L< and derivable in L and we characterize the corresponding intermediate logics. From a semantical point of view, we first consider the family of logics characterized by matrices defined by lattice filters in ⁠[0,1], but (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Paraconsistent Weak Kleene Logic: Axiomatisation and Algebraic Analysis.Stefano Bonzio, José Gil-Férez, Francesco Paoli & Luisa Peruzzi - 2017 - Studia Logica 105 (2):253-297.
    Paraconsistent Weak Kleene logic is the 3-valued logic with two designated values defined through the weak Kleene tables. This paper is a first attempt to investigate PWK within the perspective and methods of abstract algebraic logic. We give a Hilbert-style system for PWK and prove a normal form theorem. We examine some algebraic structures for PWK, called involutive bisemilattices, showing that they are distributive as bisemilattices and that they form a variety, \, generated by the 3-element algebra WK; we also (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations