Switch to: References

Add citations

You must login to add citations.
  1. Selfextensional logics with a distributive nearlattice term.Luciano J. González - 2019 - Archive for Mathematical Logic 58 (1-2):219-243.
    We define when a ternary term m of an algebraic language \ is called a distributive nearlattice term -term) of a sentential logic \. Distributive nearlattices are ternary algebras generalising Tarski algebras and distributive lattices. We characterise the selfextensional logics with a \-term through the interpretation of the DN-term in the algebras of the algebraic counterpart of the logics. We prove that the canonical class of algebras associated with a selfextensional logic with a \-term is a variety, and we obtain (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Algebraic View of Super-Belnap Logics.Hugo Albuquerque, Adam Přenosil & Umberto Rivieccio - 2017 - Studia Logica 105 (6):1051-1086.
    The Belnap–Dunn logic is a well-known and well-studied four-valued logic, but until recently little has been known about its extensions, i.e. stronger logics in the same language, called super-Belnap logics here. We give an overview of several results on these logics which have been proved in recent works by Přenosil and Rivieccio. We present Hilbert-style axiomatizations, describe reduced matrix models, and give a description of the lattice of super-Belnap logics and its connections with graph theory. We adopt the point of (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Compatibility operators in abstract algebraic logic.Hugo Albuquerque, Josep Maria Font & Ramon Jansana - 2016 - Journal of Symbolic Logic 81 (2):417-462.
    This paper presents a unified framework that explains and extends the already successful applications of the Leibniz operator, the Suszko operator, and the Tarski operator in recent developments in abstract algebraic logic. To this end, we refine Czelakowski’s notion of an S-compatibility operator, and introduce the notion of coherent family of S-compatibility operators, for a sentential logic S. The notion of coherence is a restricted property of commutativity with inverse images by surjective homomorphisms, which is satisfied by both the Leibniz (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Selfextensional Logics with a Conjunction.Ramon Jansana - 2006 - Studia Logica 84 (1):63-104.
    A logic is selfextensional if its interderivability (or mutual consequence) relation is a congruence relation on the algebra of formulas. In the paper we characterize the selfextensional logics with a conjunction as the logics that can be defined using the semilattice order induced by the interpretation of the conjunction in the algebras of their algebraic counterpart. Using the charactrization we provide simpler proofs of several results on selfextensional logics with a conjunction obtained in [13] using Gentzen systems. We also obtain (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Behavioral Algebraization of Logics.Carlos Caleiro, Ricardo Gonçalves & Manuel Martins - 2009 - Studia Logica 91 (1):63-111.
    We introduce and study a new approach to the theory of abstract algebraic logic (AAL) that explores the use of many-sorted behavioral logic in the role traditionally played by unsorted equational logic. Our aim is to extend the range of applicability of AAL toward providing a meaningful algebraic counterpart also to logics with a many-sorted language, and possibly including non-truth-functional connectives. The proposed behavioral approach covers logics which are not algebraizable according to the standard approach, while also bringing a new (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On weakening the Deduction Theorem and strengthening of Modus Ponens.Félix Bou, Josep Maria Font & José Luis García Lapresta - 2004 - Mathematical Logic Quarterly 50 (3):303.
    This paper studies, with techniques ofAlgebraic Logic, the effects of putting a bound on the cardinality of the set of side formulas in the Deduction Theorem, viewed as a Gentzen-style rule, and of adding additional assumptions inside the formulas present in Modus Ponens, viewed as a Hilbert-style rule. As a result, a denumerable collection of new Gentzen systems and two new sentential logics have been isolated. These logics are weaker than the positive implicative logic. We have determined their algebraic models (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Taking Degrees of Truth Seriously.Josep Maria Font - 2009 - Studia Logica 91 (3):383-406.
    This is a contribution to the discussion on the role of truth degrees in manyvalued logics from the perspective of abstract algebraic logic. It starts with some thoughts on the so-called Suszko’s Thesis (that every logic is two-valued) and on the conception of semantics that underlies it, which includes the truth-preserving notion of consequence. The alternative usage of truth values in order to define logics that preserve degrees of truth is presented and discussed. Some recent works studying these in the (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The Strong Version of a Sentential Logic.Ramon Jansana, Josep Maria Font & Hugo Albuquerque - 2017 - Studia Logica 105 (4):703-760.
    This paper explores a notion of “the strong version” of a sentential logic S, initially defined in terms of the notion of a Leibniz filter, and shown to coincide with the logic determined by the matrices of S whose filter is the least S-filter in the algebra of the matrix. The paper makes a general study of this notion, which appears to unify under an abstract framework the relationships between many pairs of logics in the literature. The paradigmatic examples are (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A survey of abstract algebraic logic.J. M. Font, R. Jansana & D. Pigozzi - 2003 - Studia Logica 74 (1-2):13 - 97.
    Download  
     
    Export citation  
     
    Bookmark   114 citations  
  • On the Closure Properties of the Class of Full G-models of a Deductive System.Josep Maria Font, Ramon Jansana & Don Pigozzi - 2006 - Studia Logica 83 (1-3):215-278.
    In this paper we consider the structure of the class FGModS of full generalized models of a deductive system S from a universal-algebraic point of view, and the structure of the set of all the full generalized models of S on a fixed algebra A from the lattice-theoretical point of view; this set is represented by the lattice FACSs A of all algebraic closed-set systems C on A such that (A, C) ε FGModS. We relate some properties of these structures (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Algebraizable logics with a strong conjunction and their semi-lattice based companions.Ramon Jansana - 2012 - Archive for Mathematical Logic 51 (7-8):831-861.
    The best known algebraizable logics with a conjunction and an implication have the property that the conjunction defines a meet semi-lattice in the algebras of their algebraic counterpart. This property makes it possible to associate with them a semi-lattice based deductive system as a companion. Moreover, the order of the semi-lattice is also definable using the implication. This makes that the connection between the properties of the logic and the properties of its semi-lattice based companion is strong. We introduce a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Categorical abstract algebraic logic: The largest theory system included in a theory family.George Voutsadakis - 2006 - Mathematical Logic Quarterly 52 (3):288-294.
    In this note, it is shown that, given a π -institution ℐ = 〈Sign, SEN, C 〉, with N a category of natural transformations on SEN, every theory family T of ℐ includes a unique largest theory system equation image of ℐ. equation image satisfies the important property that its N -Leibniz congruence system always includes that of T . As a consequence, it is shown, on the one hand, that the relation ΩN = ΩN characterizes N -protoalgebraicity inside the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Malinowski modalization, modalization through fibring and the Leibniz hierarchy.M. A. Martins & G. Voutsadakis - 2013 - Logic Journal of the IGPL 21 (5):836-852.
    Download  
     
    Export citation  
     
    Bookmark  
  • Leibniz-linked Pairs of Deductive Systems.Josep Maria Font & Ramon Jansana - 2011 - Studia Logica 99 (1-3):171-202.
    A pair of deductive systems (S,S’) is Leibniz-linked when S’ is an extension of S and on every algebra there is a map sending each filter of S to a filter of S’ with the same Leibniz congruence. We study this generalization to arbitrary deductive systems of the notion of the strong version of a protoalgebraic deductive system, studied in earlier papers, and of some results recently found for particular non-protoalgebraic deductive systems. The necessary examples and counterexamples found in the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Fregean logics.J. Czelakowski & D. Pigozzi - 2004 - Annals of Pure and Applied Logic 127 (1-3):17-76.
    According to Frege's principle the denotation of a sentence coincides with its truth-value. The principle is investigated within the context of abstract algebraic logic, and it is shown that taken together with the deduction theorem it characterizes intuitionistic logic in a certain strong sense.A 2nd-order matrix is an algebra together with an algebraic closed set system on its universe. A deductive system is a second-order matrix over the formula algebra of some fixed but arbitrary language. A second-order matrix A is (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • On weakening the Deduction Theorem and strengthening Modus Ponens.Félix Bou, Josep Maria Font & José Luis García Lapresta - 2004 - Mathematical Logic Quarterly 50 (3):303-324.
    This paper studies, with techniques ofAlgebraic Logic, the effects of putting a bound on the cardinality of the set of side formulas in the Deduction Theorem, viewed as a Gentzen-style rule, and of adding additional assumptions inside the formulas present in Modus Ponens, viewed as a Hilbert-style rule. As a result, a denumerable collection of new Gentzen systems and two new sentential logics have been isolated. These logics are weaker than the positive implicative logic. We have determined their algebraic models (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations