Switch to: References

Citations of:

Inexhaustibility: A Non-Exhaustive Treatment

Association for Symbolic Logic (2003)

Add citations

You must login to add citations.
  1. Cognitive Projects and the Trustworthiness of Positive Truth.Matteo Zicchetti - 2022 - Erkenntnis (8).
    The aim of this paper is twofold: first, I provide a cluster of theories of truth in classical logic that is (internally) consistent with global reflection principles: the theories of positive truth (and falsity). After that, I analyse the _epistemic value_ of such theories. I do so employing the framework of cognitive projects introduced by Wright (Proc Aristot Soc 78:167–245, 2004), and employed—in the context of theories of truth—by Fischer et al. (Noûs 2019. https://doi.org/10.1111/nous.12292 ). In particular, I will argue (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Anti-Mechanist Arguments Based on Gödel’s Theorem.Stanisław Krajewski - 2020 - Studia Semiotyczne 34 (1):9-56.
    The alleged proof of the non-mechanical, or non-computational, character of the human mind based on Gödel’s incompleteness theorem is revisited. Its history is reviewed. The proof, also known as the Lucas argument and the Penrose argument, is refuted. It is claimed, following Gödel himself and other leading logicians, that antimechanism is not implied by Gödel’s theorems alone. The present paper sets out this refutation in its strongest form, demonstrating general theorems implying the inconsistency of Lucas’s arithmetic and the semantic inadequacy (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A Theory of Implicit Commitment for Mathematical Theories.Mateusz Łełyk & Carlo Nicolai - manuscript
    The notion of implicit commitment has played a prominent role in recent works in logic and philosophy of mathematics. Although implicit commitment is often associated with highly technical studies, it remains so far an elusive notion. In particular, it is often claimed that the acceptance of a mathematical theory implicitly commits one to the acceptance of a Uniform Reflection Principle for it. However, philosophers agree that a satisfactory analysis of the transition from a theory to its reflection principle is still (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Shadows of Syntax: Revitalizing Logical and Mathematical Conventionalism.Jared Warren - 2020 - New York, USA: Oxford University Press.
    What is the source of logical and mathematical truth? This book revitalizes conventionalism as an answer to this question. Conventionalism takes logical and mathematical truth to have their source in linguistic conventions. This was an extremely popular view in the early 20th century, but it was never worked out in detail and is now almost universally rejected in mainstream philosophical circles. Shadows of Syntax is the first book-length treatment and defense of a combined conventionalist theory of logic and mathematics. It (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Finitistic Arithmetic and Classical Logic.Mihai Ganea - 2014 - Philosophia Mathematica 22 (2):167-197.
    It can be argued that only the equational theories of some sub-elementary function algebras are finitistic or intuitive according to a certain interpretation of Hilbert's conception of intuition. The purpose of this paper is to investigate the relation of those restricted forms of equational reasoning to classical quantifier logic in arithmetic. The conclusion reached is that Edward Nelson's ‘predicative arithmetic’ program, which makes essential use of classical quantifier logic, cannot be justified finitistically and thus requires a different philosophical foundation, possibly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Metamathematics of Putnam’s Model-Theoretic Arguments.Tim Button - 2011 - Erkenntnis 74 (3):321-349.
    Putnam famously attempted to use model theory to draw metaphysical conclusions. His Skolemisation argument sought to show metaphysical realists that their favourite theories have countable models. His permutation argument sought to show that they have permuted models. His constructivisation argument sought to show that any empirical evidence is compatible with the Axiom of Constructibility. Here, I examine the metamathematics of all three model-theoretic arguments, and I argue against Bays (2001, 2007) that Putnam is largely immune to metamathematical challenges.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A theory of implicit commitment.Mateusz Łełyk & Carlo Nicolai - 2022 - Synthese 200 (4):1-26.
    The notion of implicit commitment has played a prominent role in recent works in logic and philosophy of mathematics. Although implicit commitment is often associated with highly technical studies, it remains an elusive notion. In particular, it is often claimed that the acceptance of a mathematical theory implicitly commits one to the acceptance of a Uniform Reflection Principle for it. However, philosophers agree that a satisfactory analysis of the transition from a theory to its reflection principle is still lacking. We (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On Reflection.Leon Horsten - 2021 - Philosophical Quarterly 71 (4):pqaa083.
    This article gives an epistemological analysis of the reflection process by means of which you can come to know the consistency of a mathematical theory that you already accept. It is argued that this process can result in warranted belief in new mathematical principles without justifying them.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Infinite Reasoning.Jared Warren - 2020 - Philosophy and Phenomenological Research 103 (2):385-407.
    Our relationship to the infinite is controversial. But it is widely agreed that our powers of reasoning are finite. I disagree with this consensus; I think that we can, and perhaps do, engage in infinite reasoning. Many think it is just obvious that we can't reason infinitely. This is mistaken. Infinite reasoning does not require constructing infinitely long proofs, nor would it gift us with non-recursive mental powers. To reason infinitely we only need an ability to perform infinite inferences. I (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Conservative deflationism?Julien Murzi & Lorenzo Rossi - 2020 - Philosophical Studies 177 (2):535-549.
    Deflationists argue that ‘true’ is merely a logico-linguistic device for expressing blind ascriptions and infinite generalisations. For this reason, some authors have argued that deflationary truth must be conservative, i.e. that a deflationary theory of truth for a theory S must not entail sentences in S’s language that are not already entailed by S. However, it has been forcefully argued that any adequate theory of truth for S must be non-conservative and that, for this reason, truth cannot be deflationary :493–521, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Strong and Weak Truth Principles.Bartosz Wcisło Mateusz Łełyk - 2017 - Studia Semiotyczne—English Supplement 29:107-126.
    This paper is an exposition of some recent results concerning various notions of strength and weakness of the concept of truth, both published or not. We try to systematically present these notions and their relationship to the current research on truth. We discuss the concept of the Tarski boundary between weak and strong theories of truth and we give an overview of non-conservativity results for the extensions of the basic compositional truth theory. Additionally, we present a natural strong theory of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Martin-Löf’s Constructive Optimism.V. Alexis Peluce - 2020 - Studia Semiotyczne 34 (1):233-242.
    In his 1951 Gibbs Memorial Lecture, Kurt Gödel put forth his famous disjunction that either the power of the mind outstrips that of any machine or there are absolutely unsolvable problems. The view that there are no absolutely unsolvable problems is optimism, the view that there are such problems is pessimism. In his 1995—and, revised in 2013—Verificationism Then and Now, Per Martin-Löf presents an illustrative argument for a constructivist form of optimism. In response to that argument, Solomon Feferman points out (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Truth is Simple.Leon Horsten & Graham E. Leigh - 2016 - Mind:fzv184.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Truth is Simple.Leon Horsten & Graham E. Leigh - 2017 - Mind 126 (501):195-232.
    Even though disquotationalism is not correct as it is usually formulated, a deep insight lies behind it. Specifically, it can be argued that, modulo implicit commitment to reflection principles, all there is to the notion of truth is given by a simple, natural collection of truth-biconditionals.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • In memory of Torkel Franzén.Solomon Feferman - unknown
    1. Logic, determinism and free will. The determinism-free will debate is perhaps as old as philosophy itself and has been engaged in from a great variety of points of view including those of scientific, theological and logical character; my concern here is to limit attention to two arguments from logic. To begin with, there is an argument in support of determinism that dates back to Aristotle, if not farther. It rests on acceptance of the Law of Excluded Middle, according to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Axiomatic theories of truth.Volker Halbach - 2008 - Stanford Encyclopedia of Philosophy.
    Definitional and axiomatic theories of truth -- Objects of truth -- Tarski -- Truth and set theory -- Technical preliminaries -- Comparing axiomatic theories of truth -- Disquotation -- Classical compositional truth -- Hierarchies -- Typed and type-free theories of truth -- Reasons against typing -- Axioms and rules -- Axioms for type-free truth -- Classical symmetric truth -- Kripke-Feferman -- Axiomatizing Kripke's theory in partial logic -- Grounded truth -- Alternative evaluation schemata -- Disquotation -- Classical logic -- Deflationism (...)
    Download  
     
    Export citation  
     
    Bookmark   115 citations  
  • La méthode axiomatique durant la crise des fondements.Mathieu Bélanger - 2013 - In . Les Cahiers D'Ithaque.
    Download  
     
    Export citation  
     
    Bookmark  
  • Informal provability and dialetheism.Pawel Pawlowski & Rafal Urbaniak - 2023 - Theoria 89 (2):204-215.
    According to the dialetheist argument from the inconsistency of informal mathematics, the informal version of the Gödelian argument leads us to a true contradiction. On one hand, the dialetheist argues, we can prove that there is a mathematical claim that is neither provable nor refutable in informal mathematics. On the other, the proof of its unprovability is given in informal mathematics and proves that very sentence. We argue that the argument fails, because it relies on the unjustified and unlikely assumption (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Silne i słabe własności pojęcia prawdy.Bartosz Wcisło Mateusz Łełyk - 2016 - Studia Semiotyczne 30 (2):185-206.
    Niniejsza praca stanowi przegląd niedawnych wyników, zarówno opublikowanych, jak i jeszcze czekających na publikację, dotyczących różnych pojęć słabości i siły pojęcia prawdy, a także próbę ich systematyzacji i ukazania na tle szerszego nurtu badań. Omawiamy pojęcie granicy Tarskiego oddzielającej słabe i silne teorie prawdy. Omawiamy znane twierdzenia dotyczące niekonserwatywnych rozszerzeń podstawowej kompozycyjnej teorii prawdy oraz opisujemy pewną naturalną silną teorię prawdy, którą można scharakteryzować wieloma pozornie ze sobą niezwiązanymi układami aksjomatów. Na koniec przytaczamy inne możliwe eksplikacje pojęcia „siły” aksjomatycznych teorii (...)
    Download  
     
    Export citation  
     
    Bookmark