Switch to: References

Add citations

You must login to add citations.
  1. Schnorr trivial sets and truth-table reducibility.Johanna N. Y. Franklin & Frank Stephan - 2010 - Journal of Symbolic Logic 75 (2):501-521.
    We give several characterizations of Schnorr trivial sets, including a new lowness notion for Schnorr triviality based on truth-table reducibility. These characterizations allow us to see not only that some natural classes of sets, including maximal sets, are composed entirely of Schnorr trivials, but also that the Schnorr trivial sets form an ideal in the truth-table degrees but not the weak truth-table degrees. This answers a question of Downey, Griffiths and LaForte.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Anti-Complex Sets and Reducibilities with Tiny Use.Johanna N. Y. Franklin, Noam Greenberg, Frank Stephan & Guohua Wu - 2013 - Journal of Symbolic Logic 78 (4):1307-1327.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Schnorr triviality and genericity.Johanna N. Y. Franklin - 2010 - Journal of Symbolic Logic 75 (1):191-207.
    We study the connection between Schnorr triviality and genericity. We show that while no 2-generic is Turing equivalent to a Schnorr trivial and no 1-generic is tt-equivalent to a Schnorr trivial, there is a 1-generic that is Turing equivalent to a Schnorr trivial. However, every such 1-generic must be high. As a corollary, we prove that not all K-trivials are Schnorr trivial. We also use these techniques to extend a previous result and show that the bases of cones of Schnorr (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Hyperimmune-free degrees and Schnorr triviality.Johanna N. Y. Franklin - 2008 - Journal of Symbolic Logic 73 (3):999-1008.
    We investigate the relationship between lowness for Schnorr randomness and Schnorr triviality. We show that a real is low for Schnorr randomness if and only if it is Schnorr trivial and hyperimmune free.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Unified characterizations of lowness properties via Kolmogorov complexity.Takayuki Kihara & Kenshi Miyabe - 2015 - Archive for Mathematical Logic 54 (3-4):329-358.
    Consider a randomness notion C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}. A uniform test in the sense of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document} is a total computable procedure that each oracle X produces a test relative to X in the sense of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}. We say that a binary sequence Y is C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}-random uniformly relative to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation