Switch to: References

Add citations

You must login to add citations.
  1. Non-deductive logic in mathematics.James Franklin - 1987 - British Journal for the Philosophy of Science 38 (1):1-18.
    Mathematicians often speak of conjectures as being confirmed by evidence that falls short of proof. For their own conjectures, evidence justifies further work in looking for a proof. Those conjectures of mathematics that have long resisted proof, such as Fermat's Last Theorem and the Riemann Hypothesis, have had to be considered in terms of the evidence for and against them. It is argued here that it is not adequate to describe the relation of evidence to hypothesis as `subjective', `heuristic' or (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • (1 other version)Towards a theory of mathematical argument.Ian J. Dove - 2013 - In Andrew Aberdein & Ian J. Dove, The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 291--308.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Mathematics as the art of abstraction.Richard L. Epstein - 2013 - In Andrew Aberdein & Ian J. Dove, The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 257--289.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Analogical arguments in mathematics.Paul Bartha - 2013 - In Andrew Aberdein & Ian J. Dove, The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 199--237.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Argument of Mathematics.Andrew Aberdein & Ian J. Dove (eds.) - 2013 - Dordrecht, Netherland: Springer.
    Written by experts in the field, this volume presents a comprehensive investigation into the relationship between argumentation theory and the philosophy of mathematical practice. Argumentation theory studies reasoning and argument, and especially those aspects not addressed, or not addressed well, by formal deduction. The philosophy of mathematical practice diverges from mainstream philosophy of mathematics in the emphasis it places on what the majority of working mathematicians actually do, rather than on mathematical foundations. -/- The book begins by first challenging the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What Philosophy of Mathematical Practice Can Teach Argumentation Theory About Diagrams and Pictures.Brendan Larvor - 2013 - In Andrew Aberdein & Ian J. Dove, The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 239--253.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Arguing Around Mathematical Proofs.Michel Dufour - 2013 - In Andrew Aberdein & Ian J. Dove, The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 61-76.
    More or less explicitly inspired by the Aristotelian classification of arguments, a wide tradition makes a sharp distinction between argument and proof. Ch. Perelman and R. Johnson, among others, share this view based on the principle that the conclusion of an argument is uncertain while the conclusion of a proof is certain. Producing proof is certainly a major part of mathematical activity. Yet, in practice, mathematicians, expert or beginner, argue about mathematical proofs. This happens during the search for a proof, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove, The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Revealing Structures of Argumentations in Classroom Proving Processes.Christine Knipping & David Reid - 2013 - In Andrew Aberdein & Ian J. Dove, The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 119--146.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Dividing by Zero—and Other Mathematical Fallacies.Lawrence H. Powers - 2013 - In Andrew Aberdein & Ian J. Dove, The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 173--179.
    Download  
     
    Export citation  
     
    Bookmark   1 citation