Switch to: References

Add citations

You must login to add citations.
  1. Logic of paradoxes in classical set theories.Boris Čulina - 2013 - Synthese 190 (3):525-547.
    According to Cantor (Mathematische Annalen 21:545–586, 1883 ; Cantor’s letter to Dedekind, 1899 ) a set is any multitude which can be thought of as one (“jedes Viele, welches sich als Eines denken läßt”) without contradiction—a consistent multitude. Other multitudes are inconsistent or paradoxical. Set theoretical paradoxes have common root—lack of understanding why some multitudes are not sets. Why some multitudes of objects of thought cannot themselves be objects of thought? Moreover, it is a logical truth that such multitudes do (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A renaissance of empiricism in the recent philosophy of mathematics.Imre Lakatos - 1976 - British Journal for the Philosophy of Science 27 (3):201-223.
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Intuition, Iteration, Induction.Mark van Atten - 2024 - Philosophia Mathematica 32 (1):34-81.
    Brouwer’s view on induction has relatively recently been characterised as one on which it is not only intuitive (as expected) but functional, by van Dalen. He claims that Brouwer’s ‘Ur-intuition’ also yields the recursor. Appealing to Husserl’s phenomenology, I offer an analysis of Brouwer’s view that supports this characterisation and claim, even if assigning the primary role to the iterator instead. Contrasts are drawn to accounts of induction by Poincaré, Heyting, and Kreisel. On the phenomenological side, the analysis provides an (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Fraenkel's axiom of restriction: Axiom choice, intended models and categoricity.Georg Schiemer - 2010 - In Benedikt Löwe & Thomas Müller (eds.), PhiMSAMP: philosophy of mathematics: sociological aspsects and mathematical practice. London: College Publications. pp. 307{340.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Developing arithmetic in set theory without infinity: some historical remarks.Charles Parsons - 1987 - History and Philosophy of Logic 8 (2):201-213.
    In this paper some of the history of the development of arithmetic in set theory is traced, particularly with reference to the problem of avoiding the assumption of an infinite set. Although the standard method of singling out a sequence of sets to be the natural numbers goes back to Zermelo, its development was more tortuous than is generally believed. We consider the development in the light of three desiderata for a solution and argue that they can probably not all (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Literaturberichte.J. J., Dt, H. E., S., Bla, M., B., L., Wck, H., Selbstanzeige, Gbü, Boe, Schu, L. Bla, Ba, G., Snz, E. Becher, H. Brock, Gni & V. - 1928 - Annalen der Philosophie Und Philosophischen Kritik 7 (1):3-188.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Zermelo: definiteness and the universe of definable sets.Heinz-Dieter Ebbinghaus - 2003 - History and Philosophy of Logic 24 (3):197-219.
    Using hitherto unpublished manuscripts from the Zermelo Nachlass, I describe the development of the notion of definiteness and the discussion about it, giving a conclusive picture of Zermelo's thoughts up to the late thirties. As it turns out, Zermelo's considerations about definiteness are intimately related to his concept of a Cantorian universe of categorically definable sets that may be considered an inner model of set theory in an ideationally given universe of classes.
    Download  
     
    Export citation  
     
    Bookmark   8 citations