Switch to: References

Citations of:

A field guide to recent work on the foundations of statistical mechanics

In Dean Rickles (ed.), The Ashgate Companion to Contemporary Philosophy of Physics. Ashgate. pp. 99-196 (2008)

Add citations

You must login to add citations.
  1. Absorbing the Arrow of Electromagnetic Radiation.Mario Hubert & Charles T. Sebens - 2023 - Studies in History and Philosophy of Science Part A 99 (C):10-27.
    We argue that the asymmetry between diverging and converging electromagnetic waves is just one of many asymmetries in observed phenomena that can be explained by a past hypothesis and statistical postulate (together assigning probabilities to different states of matter and field in the early universe). The arrow of electromagnetic radiation is thus absorbed into a broader account of temporal asymmetries in nature. We give an accessible introduction to the problem of explaining the arrow of radiation and compare our preferred strategy (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Two Approaches to Reduction: A Case Study from Statistical Mechanics.Bixin Guo - forthcoming - Philosophy of Science:1-36.
    I argue that there are two distinct approaches to understanding reduction: the ontology-first approach and the theory-first approach. They concern the relation between ontological reduction and inter-theoretic reduction. Further, I argue for the significance of this distinction by demonstrating that either one or the other approach has been taken as an implicit assumption in, and has in fact shaped, our understanding of what statistical mechanics is. More specifically, I argue that the Boltzmannian framework of statistical mechanics assumes and relies on (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Understanding probability and irreversibility in the Mori-Zwanzig projection operator formalism.Michael te Vrugt - 2022 - European Journal for Philosophy of Science 12 (3):1-36.
    Explaining the emergence of stochastic irreversible macroscopic dynamics from time-reversible deterministic microscopic dynamics is one of the key problems in philosophy of physics. The Mori-Zwanzig projection operator formalism, which is one of the most important methods of modern nonequilibrium statistical mechanics, allows for a systematic derivation of irreversible transport equations from reversible microdynamics and thus provides a useful framework for understanding this issue. However, discussions of the MZ formalism in philosophy of physics tend to focus on simple variants rather than (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The preferred basis problem in the many-worlds interpretation of quantum mechanics: why decoherence does not solve it.Meir Hemmo & Orly Shenker - 2022 - Synthese 200 (3):1-25.
    We start by very briefly describing the measurement problem in quantum mechanics and its solution by the Many Worlds Interpretation. We then describe the preferred basis problem, and the role of decoherence in the MWI. We discuss a number of approaches to the preferred basis problem and argue that contrary to the received wisdom, decoherence by itself does not solve the problem. We address Wallace’s emergentist approach based on what he calls Dennett’s criterion, and we compare the logical structure of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The multiple-computations theorem and the physics of singling out a computation.Orly Shenker & Meir Hemmo - 2022 - The Monist 105 (1):175-193.
    The problem of multiple-computations discovered by Hilary Putnam presents a deep difficulty for functionalism (of all sorts, computational and causal). We describe in out- line why Putnam’s result, and likewise the more restricted result we call the Multiple- Computations Theorem, are in fact theorems of statistical mechanics. We show why the mere interaction of a computing system with its environment cannot single out a computation as the preferred one amongst the many computations implemented by the system. We explain why nonreductive (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Flat Physicalism.Meir Hemmo & Orly Shenker - 2021 - Theoria 88 (4):743-764.
    This paper describes a version of type identity physicalism, which we call Flat Physicalism, and shows how it meets several objections often raised against identity theories. This identity theory is informed by recent results in the conceptual foundations of physics, and in particular clar- ifies the notion of ‘physical kinds’ in light of a conceptual analysis of the paradigmatic case of reducing thermody- namics to statistical mechanics. We show how Flat Physi- calism is compatible with the appearance of multiple realisation (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • What’s so special about initial conditions? Understanding the past hypothesis in directionless time.Matt Farr - 2022 - In Yemima Ben-Menahem (ed.), Rethinking Laws of Nature. Springer.
    It is often said that the world is explained by laws of nature together with initial conditions. But does that mean initial conditions don’t require further explanation? And does the explanatory role played by initial conditions entail or require that time has a preferred direction? This chapter looks at the use of the ‘initialness defence’ in physics, the idea that initial conditions are intrinsically special in that they don’t require further explanation, unlike the state of the world at other times. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Quantum Foundations of Statistical Mechanics and Thermodynamics.Orly Shenker - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge. pp. Ch. 29.
    Statistical mechanics is often taken to be the paradigm of a successful inter-theoretic reduction, which explains the high-level phenomena (primarily those described by thermodynamics) by using the fundamental theories of physics together with some auxiliary hypotheses. In my view, the scope of statistical mechanics is wider since it is the type-identity physicalist account of all the special sciences. But in this chapter, I focus on the more traditional and less controversial domain of this theory, namely, that of explaining the thermodynamic (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Conceptual polymorphism of entropy into the history: extensions of the second law of thermodynamics towards statistical physics and chemistry during nineteenth–twentieth centuries.Raffaele Pisano, Emilio Marco Pellegrino, Abdelkader Anakkar & Maxime Nagels - 2021 - Foundations of Chemistry 23 (3):337-378.
    After the birth of thermodynamics’ second principle—outlined in Carnot's Réflexions sur la puissance motrice du feu —several studies provided new arguments in the field. Mainly, they concerned the thermodynamics’ first principle—including energy conceptualisation—, the analytical aspects of the heat propagation, the statistical aspects of the mechanical theory of heat. In other words, the second half of nineteenth century was marked by an intense interdisciplinary research activity between physics and chemistry: new disciplines applied to the heat developed in the form of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Typicality of Dynamics and the Laws of Nature.Aldo Filomeno - 2023 - In Cristián Soto (ed.), Current Debates in Philosophy of Science: In Honor of Roberto Torretti. Springer Verlag.
    Certain results, most famously in classical statistical mechanics and complex systems, but also in quantum mechanics and high-energy physics, yield a coarse-grained stable statistical pattern in the long run. The explanation of these results shares a common structure: the results hold for a 'typical' dynamics, that is, for most of the underlying dynamics. In this paper I argue that the structure of the explanation of these results might shed some light --a different light-- on philosophical debates on the laws of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • In Praise of Clausius Entropy: Reassessing the Foundations of Boltzmannian Statistical Mechanics.Christopher Gregory Weaver - 2021 - Foundations of Physics 51 (3):1-64.
    I will argue, pace a great many of my contemporaries, that there's something right about Boltzmann's attempt to ground the second law of thermodynamics in a suitably amended deterministic time-reversal invariant classical dynamics, and that in order to appreciate what's right about (what was at least at one time) Boltzmann's explanatory project, one has to fully apprehend the nature of microphysical causal structure, time-reversal invariance, and the relationship between Boltzmann entropy and the work of Rudolf Clausius.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Calling for explanation: the case of the thermodynamic past state.Dan Baras & Orly Shenker - 2020 - European Journal for Philosophy of Science 10 (3):1-20.
    Philosophers of physics have long debated whether the Past State of low entropy of our universe calls for explanation. What is meant by “calls for explanation”? In this article we analyze this notion, distinguishing between several possible meanings that may be attached to it. Taking the debate around the Past State as a case study, we show how our analysis of what “calling for explanation” might mean can contribute to clarifying the debate and perhaps to settling it, thus demonstrating the (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Information vs. entropy vs. probability.Orly Shenker - 2019 - European Journal for Philosophy of Science 10 (1):1-25.
    Information, entropy, probability: these three terms are closely interconnected in the prevalent understanding of statistical mechanics, both when this field is taught to students at an introductory level and in advanced research into the field’s foundations. This paper examines the interconnection between these three notions in light of recent research in the foundations of statistical mechanics. It disentangles these concepts and highlights their differences, at the same time explaining why they came to be so closely linked in the literature. In (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Second Law of Thermodynamics and the Psychological Arrow of Time.Meir Hemmo & Orly Shenker - 2019 - British Journal for the Philosophy of Science 73 (1):85-107.
    Can the second law of thermodynamics explain our mental experience of the direction of time? According to an influential approach, the past hypothesis of universal low entropy also explains how the psychological arrow comes about. We argue that although this approach has many attractive features, it cannot explain the psychological arrow after all. In particular, we show that the past hypothesis is neither necessary nor sufficient to explain the psychological arrow on the basis of current physics. We propose two necessary (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The physics of implementing logic: Landauer's principle and the multiple-computations theorem.Meir Hemmo & Orly Shenker - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 68:90-105.
    This paper makes a novel linkage between the multiple-computations theorem in philosophy of mind and Landauer’s principle in physics. The multiple-computations theorem implies that certain physical systems implement simultaneously more than one computation. Landauer’s principle implies that the physical implementation of “logically irreversible” functions is accompanied by minimal entropy increase. We show that the multiple-computations theorem is incompatible with, or at least challenges, the universal validity of Landauer’s principle. To this end we provide accounts of both ideas in terms of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Specialisation and the Incommensurability Among Scientific Specialties.Vincenzo Politi - 2019 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 50 (1):129-144.
    In his mature writings, Kuhn describes the process of specialisation as driven by a form of incommensurability, defined as a conceptual/linguistic barrier which promotes and guarantees the insularity of specialties. In this paper, we reject the idea that the incommensurability among scientific specialties is a linguistic barrier. We argue that the problem with Kuhn’s characterisation of the incommensurability among specialties is that he presupposes a rather abstract theory of semantic incommensurability, which he then tries to apply to his description of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Interpretive analogies between quantum and statistical mechanics.C. D. McCoy - 2020 - European Journal for Philosophy of Science 10 (1):9.
    The conspicuous similarities between interpretive strategies in classical statistical mechanics and in quantum mechanics may be grounded on their employment of common implementations of probability. The objective probabilities which represent the underlying stochasticity of these theories can be naturally associated with three of their common formal features: initial conditions, dynamics, and observables. Various well-known interpretations of the two theories line up with particular choices among these three ways of implementing probability. This perspective has significant application to debates on primitive ontology (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Asymmetry, Abstraction, and Autonomy: Justifying Coarse-Graining in Statistical Mechanics.Katie Robertson - 2020 - British Journal for the Philosophy of Science 71 (2):547-579.
    While the fundamental laws of physics are time-reversal invariant, most macroscopic processes are irreversible. Given that the fundamental laws are taken to underpin all other processes, how can the fundamental time-symmetry be reconciled with the asymmetry manifest elsewhere? In statistical mechanics, progress can be made with this question. What I dub the ‘Zwanzig–Zeh–Wallace framework’ can be used to construct the irreversible equations of SM from the underlying microdynamics. Yet this framework uses coarse-graining, a procedure that has faced much criticism. I (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • How many aims are we aiming at?Joshua Luczak - 2018 - Analysis 78 (2):244-254.
    I highlight that the aim of using statistical mechanics to underpin irreversible processes is, strictly speaking, ambiguous. Traditionally, however, the task of underpinning irreversible processes has been thought to be synonymous with underpinning the Second Law of thermodynamics. I claim that contributors to the foundational discussion are best interpreted as aiming to provide a microphysical justification of the Minus First Law, despite the ways their aims are often stated. I suggest that contributors should aim at accounting for both the Minus (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An Alternative Interpretation of Statistical Mechanics.C. D. McCoy - 2020 - Erkenntnis 85 (1):1-21.
    In this paper I propose an interpretation of classical statistical mechanics that centers on taking seriously the idea that probability measures represent complete states of statistical mechanical systems. I show how this leads naturally to the idea that the stochasticity of statistical mechanics is associated directly with the observables of the theory rather than with the microstates (as traditional accounts would have it). The usual assumption that microstates are representationally significant in the theory is therefore dispensable, a consequence which suggests (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)Foundation of statistical mechanics: Mechanics by itself.Orly Shenker - 2017 - Philosophy Compass 12 (12):e12465.
    Statistical mechanics is a strange theory. Its aims are debated, its methods are contested, its main claims have never been fully proven, and their very truth is challenged, yet at the same time, it enjoys huge empirical success and gives us the feeling that we understand important phenomena. What is this weird theory, exactly? Statistical mechanics is the name of the ongoing attempt to apply mechanics, together with some auxiliary hypotheses, to explain and predict certain phenomena, above all those described (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)Foundation of statistical mechanics: The auxiliary hypotheses.Orly Shenker - 2017 - Philosophy Compass 12 (12):e12464.
    Statistical mechanics is the name of the ongoing attempt to explain and predict certain phenomena, above all those described by thermodynamics on the basis of the fundamental theories of physics, in particular mechanics, together with certain auxiliary assumptions. In another paper in this journal, Foundations of statistical mechanics: Mechanics by itself, I have shown that some of the thermodynamic regularities, including the probabilistic ones, can be described in terms of mechanics by itself. But in order to prove those regularities, in (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The Implementation, Interpretation, and Justification of Likelihoods in Cosmology.C. D. McCoy - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 62:19-35.
    I discuss the formal implementation, interpretation, and justification of likelihood attributions in cosmology. I show that likelihood arguments in cosmology suffer from significant conceptual and formal problems that undermine their applicability in this context.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • An empirical approach to symmetry and probability.Jill North - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 41 (1):27-40.
    We often use symmetries to infer outcomes’ probabilities, as when we infer that each side of a fair coin is equally likely to come up on a given toss. Why are these inferences successful? I argue against answering this with an a priori indifference principle. Reasons to reject that principle are familiar, yet instructive. They point to a new, empirical explanation for the success of our probabilistic predictions. This has implications for indifference reasoning in general. I argue that a priori (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Deflating the deflationary view of information.Olimpia Lombardi, Sebastian Fortin & Cristian López - 2016 - European Journal for Philosophy of Science 6 (2):209-230.
    Christopher Timpson proposes a deflationary view about information, according to which the term ‘information’ is an abstract noun and, as a consequence, information is not part of the material contents of the world. The main purpose of the present article consists in supplying a critical analysis of this proposal, which will lead us to conclude that information is an item even more abstract than what Timpson claims. From this view, we embrace a pluralist stance that recognizes the legitimacy of different (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Rethinking boltzmannian equilibrium.Charlotte Werndl & Roman Frigg - 2015 - Philosophy of Science 82 (5):1224-1235.
    Boltzmannian statistical mechanics partitions the phase space of a sys- tem into macro-regions, and the largest of these is identified with equilibrium. What justifies this identification? Common answers focus on Boltzmann’s combinatorial argument, the Maxwell-Boltzmann distribution, and maxi- mum entropy considerations. We argue that they fail and present a new answer. We characterise equilibrium as the macrostate in which a system spends most of its time and prove a new theorem establishing that equilib- rium thus defined corresponds to the largest (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • The Best Humean System for Statistical Mechanics.Roman Frigg & Carl Hoefer - 2015 - Erkenntnis 80 (S3):551-574.
    Classical statistical mechanics posits probabilities for various events to occur, and these probabilities seem to be objective chances. This does not seem to sit well with the fact that the theory’s time evolution is deterministic. We argue that the tension between the two is only apparent. We present a theory of Humean objective chance and show that chances thus understood are compatible with underlying determinism and provide an interpretation of the probabilities we find in Boltzmannian statistical mechanics.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Evidence for the Deterministic or the Indeterministic Description? A Critique of the Literature About Classical Dynamical Systems.Charlotte Werndl - 2012 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 43 (2):295-312.
    It can be shown that certain kinds of classical deterministic and indeterministic descriptions are observationally equivalent. Then the question arises: which description is preferable relative to evidence? This paper looks at the main argument in the literature for the deterministic description by Winnie (The cosmos of science—essays of exploration. Pittsburgh University Press, Pittsburgh, pp 299–324, 1998). It is shown that this argument yields the desired conclusion relative to in principle possible observations where there are no limits, in principle, on observational (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Why It Is Time To Move Beyond Nagelian Reduction.Marie I. Kaiser - 2012 - In D. Dieks, S. Hartmann, T. Uebel & M. Weber (eds.), Probabilities, Laws and Structure. Springer. pp. 255-272.
    In this paper I argue that it is finally time to move beyond the Nagelian framework and to break new ground in thinking about epistemic reduction in biology. I will do so, not by simply repeating all the old objections that have been raised against Ernest Nagel’s classical model of theory reduction. Rather, I grant that a proponent of Nagel’s approach can handle several of these problems but that, nevertheless, Nagel’s general way of thinking about epistemic reduction in terms of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Explaining Thermodynamic-Like Behavior in Terms of Epsilon-Ergodicity.Roman Frigg & Charlotte Werndl - 2011 - Philosophy of Science 78 (4):628-652.
    Gases reach equilibrium when left to themselves. Why do they behave in this way? The canonical answer to this question, originally proffered by Boltzmann, is that the systems have to be ergodic. This answer has been criticised on different grounds and is now widely regarded as flawed. In this paper we argue that some of the main arguments against Boltzmann's answer, in particular, arguments based on the KAM-theorem and the Markus-Meyer theorem, are beside the point. We then argue that something (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Contemporary Approaches to Statistical Mechanical Probabilities: A Critical Commentary - Part I: The Indifference Approach.Christopher J. G. Meacham - 2010 - Philosophy Compass 5 (12):1116-1126.
    This pair of articles provides a critical commentary on contemporary approaches to statistical mechanical probabilities. These articles focus on the two ways of understanding these probabilities that have received the most attention in the recent literature: the epistemic indifference approach, and the Lewis-style regularity approach. These articles describe these approaches, highlight the main points of contention, and make some attempts to advance the discussion. The first of these articles provides a brief sketch of statistical mechanics, and discusses the indifference approach (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Contemporary Approaches to Statistical Mechanical Probabilities: A Critical Commentary - Part II: The Regularity Approach.Christopher J. G. Meacham - 2010 - Philosophy Compass 5 (12):1127-1136.
    This pair of articles provides a critical commentary on contemporary approaches to statistical mechanical probabilities. These articles focus on the two ways of understanding these probabilities that have received the most attention in the recent literature: the epistemic indifference approach, and the Lewis-style regularity approach. These articles describe these approaches, highlight the main points of contention, and make some attempts to advance the discussion. The second of these articles discusses the regularity approach to statistical mechanical probabilities, and describes some areas (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Entropy - A Guide for the Perplexed.Roman Frigg & Charlotte Werndl - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford, GB: Oxford University Press. pp. 115-142.
    Entropy is ubiquitous in physics, and it plays important roles in numerous other disciplines ranging from logic and statistics to biology and economics. However, a closer look reveals a complicated picture: entropy is defined differently in different contexts, and even within the same domain different notions of entropy are at work. Some of these are defined in terms of probabilities, others are not. The aim of this chapter is to arrive at an understanding of some of the most important notions (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • How to explain the direction of time.Alison Fernandes - 2022 - Synthese 200 (5):1-30.
    Reichenbach explains temporally asymmetric phenomena by appeal to entropy and ‘branch structure’. He explains why the entropic gradients of isolated subsystems are oriented towards the future and not the past, and why we have records of the past and not the future, by appeal to the fact that the universe is currently on a long entropic upgrade with subsystems that branch off and become quasi-isolated. Reichenbach’s approach has been criticised for relying too closely on entropy. The more popular approach nowadays (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Non-equilibrium thermodynamics and the free energy principle in biology.Matteo Colombo & Patricia Palacios - 2021 - Biology and Philosophy 36 (5):1-26.
    According to the free energy principle, life is an “inevitable and emergent property of any random dynamical system at non-equilibrium steady state that possesses a Markov blanket” :20130475, 2013). Formulating a principle for the life sciences in terms of concepts from statistical physics, such as random dynamical system, non-equilibrium steady state and ergodicity, places substantial constraints on the theoretical and empirical study of biological systems. Thus far, however, the physics foundations of the free energy principle have received hardly any attention. (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Does Neuroplasticity Support the Hypothesis of Multiple Realizability?Amber Maimon & Meir Hemmo - 2022 - Philosophy of Science 89 (1):107-127.
    It is commonly maintained that neuroplastic mechanisms in the brain provide empirical support for the hypothesis of multiple realizability. We show in various case studies that neuroplasticity stems from preexisting mechanisms and processes inherent in the neural structure of the brain. We argue that not only does neuroplasticity fail to provide empirical evidence of multiple realization, its inability to do so strengthens the mind-body identity theory. Finally, we argue that a recently proposed identity theory called Flat Physicalism can be enlisted (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Can Informational Thermal Physics explain the Approach to Equilibrium?Javier Anta - 2021 - Synthese 199 (1-2):4015–4038.
    In this paper I will defend the incapacity of the informational frameworks in thermal physics, mainly those that historically and conceptually derive from the work of Brillouin (1962) and Jaynes (1957a), to robustly explain the approach of certain gaseous systems to their state of thermal equilibrium from the dynamics of their molecular components. I will further argue that, since their various interpretative, conceptual and technical-formal resources (e.g. epistemic interpretations of probabilities and entropy measures, identification of thermal entropy as Shannon information, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mind the Gap: Boltzmannian versus Gibbsian Equilibrium.Charlotte Werndl & Roman Frigg - 2017 - Philosophy of Science 84 (5):1289-1302.
    There are two main theoretical frameworks in statistical mechanics, one associated with Boltzmann and the other with Gibbs. Despite their well-known differences, there is a prevailing view that equilibrium values calculated in both frameworks coincide. We show that this is wrong. There are important cases in which the Boltzmannian and Gibbsian equilibrium concepts yield different outcomes. Furthermore, the conditions under which equilibriums exists are different for Gibbsian and Boltzmannian statistical mechanics. There are, however, special circumstances under which it is true (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • On Nonequilibrium Statistical Mechanics.Joshua M. Luczak - unknown
    This thesis makes the issue of reconciling the existence of thermodynamically irreversible processes with underlying reversible dynamics clear, so as to help explain what philosophers mean when they say that an aim of nonequilibrium statistical mechanics is to underpin aspects of thermodynamics. Many of the leading attempts to reconcile the existence of thermodynamically irreversible processes with underlying reversible dynamics proceed by way of discussions that attempt to underpin the following qualitative facts: (i) that isolated macroscopic systems that begin away from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reconceptualising equilibrium in Boltzmannian statistical mechanics and characterising its existence.Charlotte Werndl & Roman Frigg - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 49:19-31.
    In Boltzmannian statistical mechanics macro-states supervene on micro-states. This leads to a partitioning of the state space of a system into regions of macroscopically indistinguishable micro-states. The largest of these regions is singled out as the equilibrium region of the system. What justifies this association? We review currently available answers to this question and find them wanting both for conceptual and for technical reasons. We propose a new conception of equilibrium and prove a mathematical theorem which establishes in full generality (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Thermodynamic asymmetry in time.Craig Callender - 2006 - Stanford Encyclopedia of Philosophy.
    Thermodynamics is the science that describes much of the time asymmetric behavior found in the world. This entry's first task, consequently, is to show how thermodynamics treats temporally ‘directed’ behavior. It then concentrates on the following two questions. (1) What is the origin of the thermodynamic asymmetry in time? In a world possibly governed by time symmetric laws, how should we understand the time asymmetric laws of thermodynamics? (2) Does the thermodynamic time asymmetry explain the other temporal asymmetries? Does it (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Two Kinds of High-Level Probability.Meir Hemmo & Orly Shenker - 2019 - The Monist 102 (4):458-477.
    According to influential views the probabilities in classical statistical mechanics and other special sciences are objective chances, although the underlying mechanical theory is deterministic, since the deterministic low level is inadmissible or unavailable from the high level. Here two intuitions pull in opposite directions: One intuition is that if the world is deterministic, probability can only express subjective ignorance. The other intuition is that probability of high-level phenomena, especially thermodynamic ones, is dictated by the state of affairs in the world. (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Equilibrium in Boltzmannian Statistical Mechanics.Roman Frigg & Charlotte Werndl - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Consistent Quantum Ontology.Robert B. Griffiths - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (2):93-114.
    The histories interpretation provides a consistent realistic ontology for quantum mechanics, based on two main ideas. First, a logic is employed which is compatible with the Hilbert-space structure of quantum mechanics as understood by von Neumann: quantum properties and their negations correspond to subspaces and their orthogonal complements. It employs a special syntactical rule to construct meaningful quantum expressions, quite different from the quantum logic of Birkhoff and von Neumann. Second, quantum time development is treated as an inherently stochastic process (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Who’s Afraid of Nagelian Reduction?Foad Dizadji-Bahmani, Roman Frigg & Stephan Hartmann - 2010 - Erkenntnis 73 (3):393-412.
    We reconsider the Nagelian theory of reduction and argue that, contrary to a widely held view, it is the right analysis of intertheoretic reduction. The alleged difficulties of the theory either vanish upon closer inspection or turn out to be substantive philosophical questions rather than knock-down arguments.
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • The approach towards equilibrium in Lanford’s theorem.Giovanni Valente - 2014 - European Journal for Philosophy of Science 4 (3):309-335.
    This paper develops a philosophical investigation of the merits and faults of a theorem by Lanford , Lanford , Lanford for the problem of the approach towards equilibrium in statistical mechanics. Lanford’s result shows that, under precise initial conditions, the Boltzmann equation can be rigorously derived from the Hamiltonian equations of motion for a hard spheres gas in the Boltzmann-Grad limit, thereby proving the existence of a unique solution of the Boltzmann equation, at least for a very short amount of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Demystifying Typicality.Roman Frigg & Charlotte Werndl - 2012 - Philosophy of Science 79 (5):917-929.
    A gas prepared in a non-equilibrium state will approach equilibrium and stay there. An influential contemporary approach to Statistical Mechanics explains this behaviour in terms of typicality. However, this explanation has been criticised as mysterious as long as no connection with the dynamics of the system is established. We take this criticism as our point of departure. Our central claim is that Hamiltonians of gases which are epsilon-ergodic are typical with respect to the Whitney topology. Because equilibrium states are typical, (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • (1 other version)Introduction to the Philosophy of Statistical Mechanics: Can Probability Explain the Arrow of Time in the Second Law of Thermodynamics?Orly Shenker & Meir Hemmo - 2011 - Philosophy Compass 6 (9):640-651.
    The arrow of time is a familiar phenomenon we all know from our experience: we remember the past but not the future and control the future but not the past. However, it takes an effort to keep records of the past, and to affect the future. For example, it would take an immense effort to unmix coffee and milk, although we easily mix them. Such time directed phenomena are sub- sumed under the Second Law of Thermodynamics. This law characterizes our (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Brownian motion from a deterministic system of particles.Vincent Ardourel - 2022 - Synthese 200 (1):1-15.
    Can Brownian motion arise from a deterministic system of particles? This paper addresses this question by analysing the derivation of Brownian motion as the limit of a deterministic hard-spheres gas with Lanford’s theorem. In particular, we examine the role of the Boltzmann-Grad limit in the loss of memory of the deterministic system and compare this derivation and the derivation of Brownian motion with the Langevin equation.
    Download  
     
    Export citation  
     
    Bookmark  
  • Neo-Nagelian reduction: a statement, defence, and application.Foad Dizadji-Bahmani - 2011 - Dissertation, London School of Economics
    The thesis proposes, defends, and applies a new model of inter-theoretic reduction, called "Neo-Nagelian" reduction. There are numerous accounts of inter-theoretic reduction in the philosophy of science literature but the most well-known and widely-discussed is the Nagelian one. In the thesis I identify various kinds of problems which the Nagelian model faces. Whilst some of these can be resolved, pressing ones remain. In lieu of the Nagelian model, other models of inter-theoretic reduction have been proposed, chief amongst which are so-called (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations