Switch to: References

Add citations

You must login to add citations.
  1. Representationalism is a dead end.Guilherme Sanches de Oliveira - 2018 - Synthese 198 (1):209-235.
    Representationalism—the view that scientific modeling is best understood in representational terms—is the received view in contemporary philosophy of science. Contributions to this literature have focused on a number of puzzles concerning the nature of representation and the epistemic role of misrepresentation, without considering whether these puzzles are the product of an inadequate analytical framework. The goal of this paper is to suggest that this possibility should be taken seriously. The argument has two parts, employing the “can’t have” and “don’t need” (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Scientific representation, interpretation, and surrogative reasoning.Gabriele Contessa - 2007 - Philosophy of Science 74 (1):48-68.
    In this paper, I develop Mauricio Suárez’s distinction between denotation, epistemic representation, and faithful epistemic representation. I then outline an interpretational account of epistemic representation, according to which a vehicle represents a target for a certain user if and only if the user adopts an interpretation of the vehicle in terms of the target, which would allow them to perform valid (but not necessarily sound) surrogative inferences from the model to the system. The main difference between the interpretational conception I (...)
    Download  
     
    Export citation  
     
    Bookmark   107 citations  
  • Two Styles of Reasoning in Scientific Practices: Experimental and Mathematical Traditions.Mieke Boon - 2011 - International Studies in the Philosophy of Science 25 (3):255 - 278.
    This article outlines a philosophy of science in practice that focuses on the engineering sciences. A methodological issue is that these practices seem to be divided by two different styles of scientific reasoning, namely, causal-mechanistic and mathematical reasoning. These styles are philosophically characterized by what Kuhn called ?disciplinary matrices?. Due to distinct metaphysical background pictures and/or distinct ideas of what counts as intelligible, they entail distinct ideas of the character of phenomena and what counts as a scientific explanation. It is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Science and Fiction: Analysing the Concept of Fiction in Science and its Limits.Ann-Sophie Barwich - 2013 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 44 (2):357-373.
    A recent and growing discussion in philosophy addresses the construction of models and their use in scientific reasoning by comparison with fiction. This comparison helps to explore the problem of mediated observation and, hence, the lack of an unambiguous reference of representations. Examining the usefulness of the concept of fiction for a comparison with non-denoting elements in science, the aim of this paper is to present reasonable grounds for drawing a distinction between these two kinds of representation. In particular, my (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Is Captain Kirk a natural blonde? Do X-ray crystallographers dream of electron clouds? Comparing model-based inferences in science with fiction.Ann-Sophie Barwich - 2017 - In Otávio Bueno, Steven French, George Darby & Dean Rickles (eds.), Thinking About Science, Reflecting on Art: Bringing Aesthetics and Philosophy of Science Together. New York: Routledge.
    Scientific models share one central characteristic with fiction: their relation to the physical world is ambiguous. It is often unclear whether an element in a model represents something in the world or presents an artifact of model building. Fiction, too, can resemble our world to varying degrees. However, we assign a different epistemic function to scientific representations. As artifacts of human activity, how are scientific representations allowing us to make inferences about real phenomena? In reply to this concern, philosophers of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Scientific representation: Against similarity and isomorphism.Mauricio Suárez - 2003 - International Studies in the Philosophy of Science 17 (3):225-244.
    I argue against theories that attempt to reduce scientific representation to similarity or isomorphism. These reductive theories aim to radically naturalize the notion of representation, since they treat scientist's purposes and intentions as non-essential to representation. I distinguish between the means and the constituents of representation, and I argue that similarity and isomorphism are common but not universal means of representation. I then present four other arguments to show that similarity and isomorphism are not the constituents of scientific representation. I (...)
    Download  
     
    Export citation  
     
    Bookmark   201 citations  
  • Representing with imaginary models: Formats matter.Marion Vorms - 2011 - Studies in History and Philosophy of Science Part A 42 (2):287-295.
    Models such as the simple pendulum, isolated populations, and perfectly rational agents, play a central role in theorising. It is now widely acknowledged that a study of scientific representation should focus on the role of such imaginary entities in scientists’ reasoning. However, the question is most of the time cast as follows: How can fictional or abstract entities represent the phenomena? In this paper, I show that this question is not well posed. First, I clarify the notion of representation, and (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • On the interpretation of Feynman diagrams, or, did the LHC experiments observe H → γγ?Oliver Passon - 2019 - European Journal for Philosophy of Science 9 (2):20.
    According to the received view Feynman diagrams are a bookkeeping device in complex perturbative calculations. Thus, they do not provide a representation or model of the underlying physical process. This view is in apparent tension with scientific practice in high energy physics, which analyses its data in terms of “channels”. For example the Higgs discovery was based on the observation of the decay H → γγ – a process which can be easily represented by the corresponding Feynman diagrams. I take (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the pragmatic equivalence between representing data and phenomena.James Nguyen - 2016 - Philosophy of Science 83 (2):171- 191.
    Van Fraassen argues that data provide the target-end structures required by structuralist accounts of scientific representation. But models represent phenomena not data. Van Fraassen agrees but argues that there is no pragmatic difference between taking a scientific model to accurately represent a physical system and accurately represent data extracted from it. In this article I reconstruct his argument and show that it turns on the false premise that the pragmatic content of acts of representation include doxastic commitments.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Models as icons: modeling models in the semiotic framework of Peirce’s theory of signs.Björn Kralemann & Claas Lattmann - 2013 - Synthese 190 (16):3397-3420.
    In this paper, we try to shed light on the ontological puzzle pertaining to models and to contribute to a better understanding of what models are. Our suggestion is that models should be regarded as a specific kind of signs according to the sign theory put forward by Charles S. Peirce, and, more precisely, as icons, i.e. as signs which are characterized by a similarity relation between sign (model) and object (original). We argue for this (1) by analyzing from a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • How do models give us knowledge? The case of Carnot’s ideal heat engine.Tarja Knuuttila & Mieke Boon - 2011 - European Journal for Philosophy of Science 1 (3):309-334.
    Our concern is in explaining how and why models give us useful knowledge. We argue that if we are to understand how models function in the actual scientific practice the representational approach to models proves either misleading or too minimal. We propose turning from the representational approach to the artefactual, which implies also a new unit of analysis: the activity of modelling. Modelling, we suggest, could be approached as a specific practice in which concrete artefacts, i.e., models, are constructed with (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Models as signs: extending Kralemann and Lattman’s proposal on modeling models within Peirce’s theory of signs.Sergio A. Gallegos - 2019 - Synthese 196 (12):5115-5136.
    In recent decades, philosophers of science have devoted considerable efforts to understand what models represent. One popular position is that models represent fictional situations. Another position states that, though models often involve fictional elements, they represent real objects or scenarios. Though these two positions may seem to be incompatible, I believe it is possible to reconcile them. Using a threefold distinction between different signs proposed by Peirce, I develop an argument based on a proposal recently made by Kralemann and Lattman (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The turn of the valve: representing with material models.Roman Frigg & James Nguyen - 2018 - European Journal for Philosophy of Science 8 (2):205-224.
    Many scientific models are representations. Building on Goodman and Elgin’s notion of representation-as we analyse what this claim involves by providing a general definition of what makes something a scientific model, and formulating a novel account of how they represent. We call the result the DEKI account of representation, which offers a complex kind of representation involving an interplay of, denotation, exemplification, keying up of properties, and imputation. Throughout we focus on material models, and we illustrate our claims with the (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Ramsey Equivalence.Neil Dewar - 2019 - Erkenntnis 84 (1):77-99.
    In the literature over the Ramsey-sentence approach to structural realism, there is often debate over whether structural realists can legitimately restrict the range of the second-order quantifiers, in order to avoid the Newman problem. In this paper, I argue that even if they are allowed to, it won’t help: even if the Ramsey sentence is interpreted using such restricted quantifiers, it is still an implausible candidate to capture a theory’s structural content. To do so, I use the following observation: if (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Realism and instrumentalism in Bayesian cognitive science.Danielle Williams & Zoe Drayson - 2024 - In Tony Cheng, Ryoji Sato & Jakob Hohwy (eds.), Expected Experiences: The Predictive Mind in an Uncertain World. Routledge.
    There are two distinct approaches to Bayesian modelling in cognitive science. Black-box approaches use Bayesian theory to model the relationship between the inputs and outputs of a cognitive system without reference to the mediating causal processes; while mechanistic approaches make claims about the neural mechanisms which generate the outputs from the inputs. This paper concerns the relationship between these two approaches. We argue that the dominant trend in the philosophical literature, which characterizes the relationship between black-box and mechanistic approaches to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Scientific representation.Roman Frigg & James Nguyen - 2016 - Stanford Encyclopedia of Philosophy.
    Science provides us with representations of atoms, elementary particles, polymers, populations, genetic trees, economies, rational decisions, aeroplanes, earthquakes, forest fires, irrigation systems, and the world’s climate. It's through these representations that we learn about the world. This entry explores various different accounts of scientific representation, with a particular focus on how scientific models represent their target systems. As philosophers of science are increasingly acknowledging the importance, if not the primacy, of scientific models as representational units of science, it's important to (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Formats of representation in scientific theorizing.Marion Vorms - 2009 - In Paul Humphreys & Cyrille Imbert (eds.), Models, Simulations, and Representations. Routledge. pp. 250-273.
    This paper is intended to sketch the definition of a methodological tool -- the notion of a format of representation -- for the study of scientific theorising. One of its main assumption is that a philosophical study of theorising needs to pay attention to other types of units of analysis than the traditional ones, namely, theories and models approached in a logical and structural way, since scientific reasoning is always led on concrete representational devices and depends upon their specific properties. (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • On the Problem of Relation without Relata.Aboutorab Yaghmaie - 2021 - Journal of Philosophical Investigations at University of Tabriz 14 (33):404-425.
    The claim that there can be relations without relata, submitted by the radical ontic structural realist, mounts a serious challenge to her: on the one hand, the world is constituted, according to this sort of realism, just by structures and relations, and on the other hand, relations depend, mathematics says, on individual objects as relata. To resolve the problem, Steven French has argued that while the dependency of relations on relata is conceivable concerning the structure associated with the source of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Framing the Epistemic Schism of Statistical Mechanics.Javier Anta - 2021 - Proceedings of the X Conference of the Spanish Society of Logic, Methodology and Philosophy of Science.
    In this talk I present the main results from Anta (2021), namely, that the theoretical division between Boltzmannian and Gibbsian statistical mechanics should be understood as a separation in the epistemic capabilities of this physical discipline. In particular, while from the Boltzmannian framework one can generate powerful explanations of thermal processes by appealing to their microdynamics, from the Gibbsian framework one can predict observable values in a computationally effective way. Finally, I argue that this statistical mechanical schism contradicts the Hempelian (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematics and the world: explanation and representation.John-Hamish Heron - 2017 - Dissertation, King’s College London
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Representation and Explanation: structuralism, the similarity account, and the hotchpotch picture.Ziren Yang - 2020 - Dissertation, University of Leeds
    This thesis starts with three challenges to the structuralist accounts of applied mathematics. Structuralism views applied mathematics as a matter of building mapping functions between mathematical and target-ended structures. The first challenge concerns how it is possible for a non-mathematical target to be represented mathematically when the mapping functions per se are mathematical objects. The second challenge arises out of inconsistent early calculus, which suggests that mathematical representation does not require rigorous mathematical structures. The third challenge comes from renormalisation group (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Models and Maps: An Essay on Epistemic Representation.Gabriele Contessa - manuscript
    This book defends a two-tiered account of epistemic representation--the sort of representation relation that holds between representations such as maps and scientific models and their targets. It defends a interpretational account of epistemic representation and a structural similarity account of overall faithful epistemic representation.
    Download  
     
    Export citation  
     
    Bookmark  
  • Robustness, evidence, and uncertainty: an exploration of policy applications of robustness analysis.Nicolas Wüthrich - unknown
    Policy-makers face an uncertain world. One way of getting a handle on decision-making in such an environment is to rely on evidence. Despite the recent increase in post-fact figures in politics, evidence-based policymaking takes centre stage in policy-setting institutions. Often, however, policy-makers face large volumes of evidence from different sources. Robustness analysis can, prima facie, handle this evidential diversity. Roughly, a hypothesis is supported by robust evidence if the different evidential sources are in agreement. In this thesis, I strengthen the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Explaining simulated phenomena. A defense of the epistemic power of computer simulations.Juan M. Durán - 2013 - Dissertation, University of Stuttgart
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • How models represent.James Nguyen - 2016 - Dissertation,
    Scientific models are important, if not the sole, units of science. This thesis addresses the following question: in virtue of what do scientific models represent their target systems? In Part i I motivate the question, and lay out some important desiderata that any successful answer must meet. This provides a novel conceptual framework in which to think about the question of scientific representation. I then argue against Callender and Cohen’s attempt to diffuse the question. In Part ii I investigate the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations