Switch to: References

Add citations

You must login to add citations.
  1. Bilattices are nice things.Melvin Fitting - 2008 - In Thomas Bolander (ed.), Self-reference. Center for the Study of Language and Inf.
    One approach to the paradoxes of self-referential languages is to allow some sentences to lack a truth value (or to have more than one). Then assigning truth values where possible becomes a fixpoint construction and, following Kripke, this is usually carried out over a partially ordered family of three-valued truth-value assignments. Some years ago Matt Ginsberg introduced the notion of bilattice, with applications to artificial intelligence in mind. Bilattices generalize the structure Kripke used in a very natural way, while making (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • A Theory of Truthmaker Content I: Conjunction, Disjunction and Negation.Kit Fine - 2017 - Journal of Philosophical Logic 46 (6):625-674.
    I develop a basic theory of content within the framework of truthmaker semantics and, in the second part, consider some of the applications to subject matter, common content, logical subtraction and ground.
    Download  
     
    Export citation  
     
    Bookmark   92 citations  
  • Gentzen-Type Methods for Bilattice Negation.Norihiro Kamide - 2005 - Studia Logica 80 (2-3):265-289.
    A general Gentzen-style framework for handling both bilattice (or strong) negation and usual negation is introduced based on the characterization of negation by a modal-like operator. This framework is regarded as an extension, generalization or re- finement of not only bilattice logics and logics with strong negation, but also traditional logics including classical logic LK, classical modal logic S4 and classical linear logic CL. Cut-elimination theorems are proved for a variety of proposed sequent calculi including CLS (a conservative extension of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Logic of Generalized Truth Values and the Logic of Bilattices.Sergei P. Odintsov & Heinrich Wansing - 2015 - Studia Logica 103 (1):91-112.
    This paper sheds light on the relationship between the logic of generalized truth values and the logic of bilattices. It suggests a definite solution to the problem of axiomatizing the truth and falsity consequence relations, \ and \ , considered in a language without implication and determined via the truth and falsity orderings on the trilattice SIXTEEN 3 . The solution is based on the fact that a certain algebra isomorphic to SIXTEEN 3 generates the variety of commutative and distributive (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Truth and Falsehood: An Inquiry Into Generalized Logical Values.Yaroslav Shramko & Heinrich Wansing - 2011 - Dordrecht, Netherland: Springer.
    The book presents a thoroughly elaborated logical theory of generalized truth-values understood as subsets of some established set of truth values. After elucidating the importance of the very notion of a truth value in logic and philosophy, we examine some possible ways of generalizing this notion. The useful four-valued logic of first-degree entailment by Nuel Belnap and the notion of a bilattice constitute the basis for further generalizations. By doing so we elaborate the idea of a multilattice, and most notably, (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Completeness and cut-elimination theorems for trilattice logics.Norihiro Kamide & Heinrich Wansing - 2011 - Annals of Pure and Applied Logic 162 (10):816-835.
    A sequent calculus for Odintsov’s Hilbert-style axiomatization of a logic related to the trilattice SIXTEEN3 of generalized truth values is introduced. The completeness theorem w.r.t. a simple semantics for is proved using Maehara’s decomposition method that simultaneously derives the cut-elimination theorem for . A first-order extension of and its semantics are also introduced. The completeness and cut-elimination theorems for are proved using Schütte’s method.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A general framework for product representations: bilattices and beyond.L. M. Cabrer & H. A. Priestley - 2015 - Logic Journal of the IGPL 23 (5):816-841.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Natural Dualities Through Product Representations: Bilattices and Beyond.L. M. Cabrer & H. A. Priestley - 2016 - Studia Logica 104 (3):567-592.
    This paper focuses on natural dualities for varieties of bilattice-based algebras. Such varieties have been widely studied as semantic models in situations where information is incomplete or inconsistent. The most popular tool for studying bilattices-based algebras is product representation. The authors recently set up a widely applicable algebraic framework which enabled product representations over a base variety to be derived in a uniform and categorical manner. By combining this methodology with that of natural duality theory, we demonstrate how to build (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Proof Systems Combining Classical and Paraconsistent Negations.Norihiro Kamide - 2009 - Studia Logica 91 (2):217-238.
    New propositional and first-order paraconsistent logics (called L ω and FL ω , respectively) are introduced as Gentzen-type sequent calculi with classical and paraconsistent negations. The embedding theorems of L ω and FL ω into propositional (first-order, respectively) classical logic are shown, and the completeness theorems with respect to simple semantics for L ω and FL ω are proved. The cut-elimination theorems for L ω and FL ω are shown using both syntactical ways via the embedding theorems and semantical ways (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Some Useful 16-Valued Logics: How a Computer Network Should Think.Yaroslav Shramko & Heinrich Wansing - 2005 - Journal of Philosophical Logic 34 (2):121-153.
    In Belnap's useful 4-valued logic, the set 2 = {T, F} of classical truth values is generalized to the set 4 = ������(2) = {Ø, {T}, {F}, {T, F}}. In the present paper, we argue in favor of extending this process to the set 16 = ᵍ (4) (and beyond). It turns out that this generalization is well-motivated and leads from the bilattice FOUR₂ with an information and a truth-and-falsity ordering to another algebraic structure, namely the trilattice SIXTEEN₃ with an (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Four-Valued Paradefinite Logics.Ofer Arieli & Arnon Avron - 2017 - Studia Logica 105 (6):1087-1122.
    Paradefinite logics are logics that can be used for handling contradictory or partial information. As such, paradefinite logics should be both paraconsistent and paracomplete. In this paper we consider the simplest semantic framework for introducing paradefinite logics. It consists of the four-valued matrices that expand the minimal matrix which is characteristic for first degree entailments: Dunn–Belnap matrix. We survey and study the expressive power and proof theory of the most important logics that can be developed in this framework.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Non-Classical Negation in the Works of Helena Rasiowa and Their Impact on the Theory of Negation.Dimiter Vakarelov - 2006 - Studia Logica 84 (1):105-127.
    The paper is devoted to the contributions of Helena Rasiowa to the theory of non-classical negation. The main results of Rasiowa in this area concerns–constructive logic with strong (Nelson) negation.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Nelson's Negation on the Base of Weaker Versions of Intuitionistic Negation.Dimiter Vakarelov - 2005 - Studia Logica 80 (2):393-430.
    Constructive logic with Nelson negation is an extension of the intuitionistic logic with a special type of negation expressing some features of constructive falsity and refutation by counterexample. In this paper we generalize this logic weakening maximally the underlying intuitionistic negation. The resulting system, called subminimal logic with Nelson negation, is studied by means of a kind of algebras called generalized N-lattices. We show that generalized N-lattices admit representation formalizing the intuitive idea of refutation by means of counterexamples giving in (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A relationship between Rauszer's HB logic and Nelson's logic'.Norihiro Kamide - 2004 - Bulletin of the Section of Logic 33 (4):237-249.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Propositional dynamic logic with belnapian truth values.Igor Sedlár - 2016 - In Lev Beklemishev, Stéphane Demri & András Máté (eds.), Advances in Modal Logic, Volume 11. CSLI Publications. pp. 503-519.
    Download  
     
    Export citation  
     
    Bookmark   4 citations