Switch to: References

Add citations

You must login to add citations.
  1. Representation of interlaced trilattices.Umberto Rivieccio - 2013 - Journal of Applied Logic 11 (2):174-189.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Inconsistency-tolerant description logic. Part II: A tableau algorithm for CALC C.S. P. Odintsov & H. Wansing - 2008 - Journal of Applied Logic 6 (3):343-360.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Shifting Priorities: Simple Representations for Twenty-seven Iterated Theory Change Operators.Hans Rott - 2009 - In Jacek Malinowski David Makinson & Wansing Heinrich (eds.), Towards Mathematical Philosophy. Springer. pp. 269–296.
    Prioritized bases, i.e., weakly ordered sets of sentences, have been used for specifying an agent’s ‘basic’ or ‘explicit’ beliefs, or alternatively for compactly encoding an agent’s belief state without the claim that the elements of a base are in any sense basic. This paper focuses on the second interpretation and shows how a shifting of priorities in prioritized bases can be used for a simple, constructive and intuitive way of representing a large variety of methods for the change of belief (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Generalizing Functional Completeness in Belnap-Dunn Logic.Hitoshi Omori & Katsuhiko Sano - 2015 - Studia Logica 103 (5):883-917.
    One of the problems we face in many-valued logic is the difficulty of capturing the intuitive meaning of the connectives introduced through truth tables. At the same time, however, some logics have nice ways to capture the intended meaning of connectives easily, such as four-valued logic studied by Belnap and Dunn. Inspired by Dunn’s discovery, we first describe a mechanical procedure, in expansions of Belnap-Dunn logic, to obtain truth conditions in terms of the behavior of the Truth and the False, (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Faulty Belnap Computers and Subsystems of FDE.Thomas Macaulay Ferguson - 2016 - Journal of Logic and Computation 26 (5):1617–1636.
    In this article, we consider variations of Nuel Belnap’s ‘artificial reasoner’. In particular, we examine cases in which the artificial reasoner is faulty, e.g. situations in which the reasoner is unable to calculate the value of a formula due to an inability to retrieve the values of its atoms. In the first half of the article, we consider two ways of modelling such circumstances and prove the deductive systems arising from these two types of models to be equivalent to Graham (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Constructive negation, implication, and co-implication.Heinrich Wansing - 2008 - Journal of Applied Non-Classical Logics 18 (2-3):341-364.
    In this paper, a family of paraconsistent propositional logics with constructive negation, constructive implication, and constructive co-implication is introduced. Although some fragments of these logics are known from the literature and although these logics emerge quite naturally, it seems that none of them has been considered so far. A relational possible worlds semantics as well as sound and complete display sequent calculi for the logics under consideration are presented.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Completeness and cut-elimination theorems for trilattice logics.Norihiro Kamide & Heinrich Wansing - 2011 - Annals of Pure and Applied Logic 162 (10):816-835.
    A sequent calculus for Odintsov’s Hilbert-style axiomatization of a logic related to the trilattice SIXTEEN3 of generalized truth values is introduced. The completeness theorem w.r.t. a simple semantics for is proved using Maehara’s decomposition method that simultaneously derives the cut-elimination theorem for . A first-order extension of and its semantics are also introduced. The completeness and cut-elimination theorems for are proved using Schütte’s method.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Non-Inferentialist, Anti-Realistic Conception of Logical Truth and Falsity.Heinrich Wansing - 2012 - Topoi 31 (1):93-100.
    Anti-realistic conceptions of truth and falsity are usually epistemic or inferentialist. Truth is regarded as knowability, or provability, or warranted assertability, and the falsity of a statement or formula is identified with the truth of its negation. In this paper, a non-inferentialist but nevertheless anti-realistic conception of logical truth and falsity is developed. According to this conception, a formula (or a declarative sentence) A is logically true if and only if no matter what is told about what is told about (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Power of Belnap: Sequent Systems for SIXTEEN ₃. [REVIEW]Heinrich Wansing - 2010 - Journal of Philosophical Logic 39 (4):369 - 393.
    The trilattice SIXTEEN₃ is a natural generalization of the wellknown bilattice FOUR₂. Cut-free, sound and complete sequent calculi for truth entailment and falsity entailment in SIXTEEN₃, are presented.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Algebraic Completeness of Connexive and Bi-Intuitionistic Multilattice Logics.Yaroslav Petrukhin - 2024 - Journal of Logic, Language and Information 33 (2):179-196.
    In this paper, we introduce the notions of connexive and bi-intuitionistic multilattices and develop on their base the algebraic semantics for Kamide, Shramko, and Wansing’s connexive and bi-intuitionistic multilattice logics which were previously known in the form of sequent calculi and Kripke semantics. We prove that these logics are sound and complete with respect to the presented algebraic structures.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Value of the One Value: Exactly True Logic revisited.Andreas Kapsner & Umberto Rivieccio - 2023 - Journal of Philosophical Logic 52 (5):1417-1444.
    In this paper we re-assess the philosophical foundation of Exactly True Logic ($$\mathcal {ET\!L}$$ ET L ), a competing variant of First Degree Entailment ($$\mathcal {FDE}$$ FDE ). In order to do this, we first rebut an argument against it. As the argument appears in an interview with Nuel Belnap himself, one of the fathers of $$\mathcal {FDE}$$ FDE, we believe its provenance to be such that it needs to be taken seriously. We submit, however, that the argument ultimately fails, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Alternative Multilattice Logics: An Approach Based on Monosequent and Indexed Monosequent Calculi.Norihiro Kamide - 2021 - Studia Logica 109 (6):1241-1271.
    Two new multilattice logics called submultilattice logic and indexed multilattice logic are introduced as a monosequent calculus and an indexed monosequent calculus, respectively. The submultilattice logic is regarded as a monosequent calculus version of Shramko’s original multilattice logic, which is also known as the logic of logical multilattices. The indexed multilattice logic is an extension of the submultilattice logic, and is regarded as the logic of multilattices. A completeness theorem with respect to a lattice-valued semantics is proved for the submultilattice (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Formes, objets et négation selon Granger.Fabien Schang - 2020 - Philosophiques 47 (1):3-33.
    Il s’agit de comprendre dans cet article l’opposition formulée par Gilles-Gaston Granger entre deux types de négation : la négation « radicale », d’un côté, et les négations « appliquées » de l’autre. Nous examinerons les propriétés de cette opposition, ainsi que les enseignements à en tirer sur la philosophie de la logique de Granger. Puis nous proposerons une théorie constructive des valeurs logiques considérées comme des objets structurés, consolidant à la fois l’unité de la théorie logique de Granger et (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reasons and Causes in Psychiatry: Ideas from Donald Davidson’s Work.Elisabetta Lalumera - 2018 - In Annalisa Coliva, Paolo Leonardi & Sebastiano Moruzzi (eds.), Eva Picardi on Language, Analysis and History. Londra, Regno Unito: Palgrave. pp. 281-296.
    Though the divide between reason-based and causal-explanatory approaches in psychiatry and psychopathology is old and deeply rooted, current trends involving multi-factorial explanatory models and evidence-based approaches to interpersonal psychotherapy, show that it has already been implicitly bridged. These trends require a philosophical reconsideration of how reasons can be causes. This paper contributes to that trajectory by arguing that Donald Davidson’s classic paradigm of 1963 is still a valid option.
    Download  
     
    Export citation  
     
    Bookmark  
  • On a multilattice analogue of a hypersequent S5 calculus.Oleg Grigoriev & Yaroslav Petrukhin - forthcoming - Logic and Logical Philosophy:1.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Conservative translations of four-valued logics in modal logic.Ekaterina Kubyshkina - 2019 - Synthese 198 (S22):5555-5571.
    Following a proposal by Kooi and Tamminga, we introduce a conservative translation manual for every four-valued truth-functional propositional logic into a modal logic. However, the application of this translation does not preserve the intuitive reading of the truth-values for every four-valued logic. In order to solve this problem, we modify the translation manual and prove its conservativity by exploiting the method of generalized truth-values.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Analytic Tableaux for all of SIXTEEN 3.Stefan Wintein & Reinhard Muskens - 2015 - Journal of Philosophical Logic 44 (5):473-487.
    In this paper we give an analytic tableau calculus P L 1 6 for a functionally complete extension of Shramko and Wansing’s logic. The calculus is based on signed formulas and a single set of tableau rules is involved in axiomatising each of the four entailment relations ⊧ t, ⊧ f, ⊧ i, and ⊧ under consideration—the differences only residing in initial assignments of signs to formulas. Proving that two sets of formulas are in one of the first three entailment (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Interpolation in 16-Valued Trilattice Logics.Reinhard Muskens & Stefan Wintein - 2018 - Studia Logica 106 (2):345-370.
    In a recent paper we have defined an analytic tableau calculus PL_16 for a functionally complete extension of Shramko and Wansing's logic based on the trilattice SIXTEEN_3. This calculus makes it possible to define syntactic entailment relations that capture central semantic relations of the logic---such as the relations |=_t, |=_f, and |=_i that each correspond to a lattice order in SIXTEEN_3; and |=, the intersection of |=_t and |=_f,. -/- It turns out that our method of characterising these semantic relations---as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modal Multilattice Logic.Norihiro Kamide & Yaroslav Shramko - 2017 - Logica Universalis 11 (3):317-343.
    A modal extension of multilattice logic, called modal multilattice logic, is introduced as a Gentzen-type sequent calculus \. Theorems for embedding \ into a Gentzen-type sequent calculus S4C and vice versa are proved. The cut-elimination theorem for \ is shown. A Kripke semantics for \ is introduced, and the completeness theorem with respect to this semantics is proved. Moreover, the duality principle is proved as a characteristic property of \.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Dunn–Priest Quotients of Many-Valued Structures.Thomas Macaulay Ferguson - 2017 - Notre Dame Journal of Formal Logic 58 (2):221-239.
    J. Michael Dunn’s Theorem in 3-Valued Model Theory and Graham Priest’s Collapsing Lemma provide the means of constructing first-order, three-valued structures from classical models while preserving some control over the theories of the ensuing models. The present article introduces a general construction that we call a Dunn–Priest quotient, providing a more general means of constructing models for arbitrary many-valued, first-order logical systems from models of any second system. This technique not only counts Dunn’s and Priest’s techniques as special cases, but (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Bi-facial Truth: a Case for Generalized Truth Values.Dmitry Zaitsev & Yaroslav Shramko - 2013 - Studia Logica 101 (6):1299-1318.
    We explore a possibility of generalization of classical truth values by distinguishing between their ontological and epistemic aspects and combining these aspects within a joint semantical framework. The outcome is four generalized classical truth values implemented by Cartesian product of two sets of classical truth values, where each generalized value comprises both ontological and epistemic components. This allows one to define two unary twin connectives that can be called “semi-classical negations”. Each of these negations deals only with one of the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Truth as a Mathematical Object.Jean-Yves Béziau - 2010 - Principia: An International Journal of Epistemology 14 (1):31-46.
    Neste artigo, discutimos em que sentido a verdade é considerada como um objeto matemático na lógica proposicional. Depois de esclarecer como este conceito é usado na lógica clássica, através das noções de tabela de verdade, de função de verdade, de bivaloração, examinamos algumas generalizações desse conceito nas lógicas não clássicas: semânticas matriciais multi-valoradas com três ou quatro valores, semântica bivalente não veritativa, semânticas dos mundos possiveis de Kripke. DOI:10.5007/1808-1711.2010v14n1p31.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Sequent calculi for some trilattice logics.Norihiro Kamide & Heinrich Wansing - 2009 - Review of Symbolic Logic 2 (2):374-395.
    The trilattice SIXTEEN3 introduced in Shramko & Wansing (2005) is a natural generalization of the famous bilattice FOUR2. Some Hilbert-style proof systems for trilattice logics related to SIXTEEN3 have recently been studied (Odintsov, 2009; Shramko & Wansing, 2005). In this paper, three sequent calculi GB, FB, and QB are presented for Odintsovs coordinate valuations associated with valuations in SIXTEEN3. The equivalence between GB, FB, and QB, the cut-elimination theorems for these calculi, and the decidability of B are proved. In addition, (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Hyper-contradictions, generalized truth values and logics of truth and falsehood.Yaroslav Shramko & Heinrich Wansing - 2006 - Journal of Logic, Language and Information 15 (4):403-424.
    In Philosophical Logic, the Liar Paradox has been used to motivate the introduction of both truth value gaps and truth value gluts. Moreover, in the light of “revenge Liar” arguments, also higher-order combinations of generalized truth values have been suggested to account for so-called hyper-contradictions. In the present paper, Graham Priest's treatment of generalized truth values is scrutinized and compared with another strategy of generalizing the set of classical truth values and defining an entailment relation on the resulting sets of (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • (1 other version)Provability multilattice logic.Yaroslav Petrukhin - 2022 - Journal of Applied Non-Classical Logics 32 (4):239-272.
    In this paper, we introduce provability multilattice logic PMLn and multilattice arithmetic MPAn which extends first-order multilattice logic with equality by multilattice versions of Peano axioms. We show that PMLn has the provability interpretation with respect to MPAn and prove the arithmetic completeness theorem for it. We formulate PMLn in the form of a nested sequent calculus and show that cut is admissible in it. We introduce the notion of a provability multilattice and develop algebraic semantics for PMLn on its (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-contingency in a Paraconsistent Setting.Daniil Kozhemiachenko & Liubov Vashentseva - forthcoming - Logic Journal of the IGPL.
    We study an extension of first-degree entailment (FDE) by Dunn and Belnap with a non-contingency operator |$\blacktriangle \phi $| which is construed as ‘|$\phi $| has the same value in all accessible states’ or ‘all sources give the same information on the truth value of |$\phi $|’. We equip this logic dubbed |$\textbf {K}^\blacktriangle _{\textbf {FDE}}$| with frame semantics and show how the bi-valued models can be interpreted as interconnected networks of Belnapian databases with the |$\blacktriangle $| operator modelling search (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Note on FDE “All the Way Up”.Jc Beall & Caleb Camrud - 2020 - Notre Dame Journal of Formal Logic 61 (2):283-296.
    A very natural and philosophically important subclassical logic is FDE. This account of logical consequence can be seen as going beyond the standard two-valued account to a four-valued account. A natural question arises: What account of logical consequence arises from considering further combinations of such values? A partial answer was given by Priest in 2014; Shramko and Wansing had also given a partial result some years earlier, although in a different context. In this note we generalize Priest’s result to show (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Fmla-Fmla Axiomatizations of the Exactly True and Non-falsity Logics and Some of Their Cousins.Yaroslav Shramko, Dmitry Zaitsev & Alexander Belikov - 2019 - Journal of Philosophical Logic 48 (5):787-808.
    In this paper we present a solution of the axiomatization problem for the Fmla-Fmla versions of the Pietz and Rivieccio exactly true logic and the non-falsity logic dual to it. To prove the completeness of the corresponding binary consequence systems we introduce a specific proof-theoretic formalism, which allows us to deal simultaneously with two consequence relations within one logical system. These relations are hierarchically organized, so that one of them is treated as the basic for the resulting logic, and the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Kripke Completeness of Bi-intuitionistic Multilattice Logic and its Connexive Variant.Norihiro Kamide, Yaroslav Shramko & Heinrich Wansing - 2017 - Studia Logica 105 (6):1193-1219.
    In this paper, bi-intuitionistic multilattice logic, which is a combination of multilattice logic and the bi-intuitionistic logic also known as Heyting–Brouwer logic, is introduced as a Gentzen-type sequent calculus. A Kripke semantics is developed for this logic, and the completeness theorem with respect to this semantics is proved via theorems for embedding this logic into bi-intuitionistic logic. The logic proposed is an extension of first-degree entailment logic and can be regarded as a bi-intuitionistic variant of the original classical multilattice logic (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On Axiomatizing Shramko-Wansing’s Logic.Sergei P. Odintsov - 2009 - Studia Logica 91 (3):407-428.
    This work treats the problem of axiomatizing the truth and falsity consequence relations, ⊨ t and ⊨ f, determined via truth and falsity orderings on the trilattice SIXTEEN 3 (Shramko and Wansing, 2005). The approach is based on a representation of SIXTEEN 3 as a twist-structure over the two-element Boolean algebra.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • The Logic of Generalized Truth Values and the Logic of Bilattices.Sergei P. Odintsov & Heinrich Wansing - 2015 - Studia Logica 103 (1):91-112.
    This paper sheds light on the relationship between the logic of generalized truth values and the logic of bilattices. It suggests a definite solution to the problem of axiomatizing the truth and falsity consequence relations, \ and \ , considered in a language without implication and determined via the truth and falsity orderings on the trilattice SIXTEEN 3 . The solution is based on the fact that a certain algebra isomorphic to SIXTEEN 3 generates the variety of commutative and distributive (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Notes on Craig interpolation for LJ with strong negation.Norihiro Kamide - 2011 - Mathematical Logic Quarterly 57 (4):395-399.
    The Craig interpolation theorem is shown for an extended LJ with strong negation. A new simple proof of this theorem is obtained. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Hierarchy of Weak Double Negations.Norihiro Kamide - 2013 - Studia Logica 101 (6):1277-1297.
    In this paper, a way of constructing many-valued paraconsistent logics with weak double negation axioms is proposed. A hierarchy of weak double negation axioms is addressed in this way. The many-valued paraconsistent logics constructed are defined as Gentzen-type sequent calculi. The completeness and cut-elimination theorems for these logics are proved in a uniform way. The logics constructed are also shown to be decidable.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A few more useful 8-valued logics for reasoning with tetralattice eight.Dmitry Zaitsev - 2009 - Studia Logica 92 (2):265 - 280.
    In their useful logic for a computer network Shramko and Wansing generalize initial values of Belnap’s 4-valued logic to the set 16 to be the power-set of Belnap’s 4. This generalization results in a very specific algebraic structure — the trilattice SIXTEEN 3 with three orderings: information, truth and falsity. In this paper, a slightly different way of generalization is presented. As a base for further generalization a set 3 is chosen, where initial values are a — incoming data is (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Logical Multilateralism.Heinrich Wansing & Sara Ayhan - 2023 - Journal of Philosophical Logic 52 (6):1603-1636.
    In this paper we will consider the existing notions of bilateralism in the context of proof-theoretic semantics and propose, based on our understanding of bilateralism, an extension to logical multilateralism. This approach differs from what has been proposed under this name before in that we do not consider multiple speech acts as the core of such a theory but rather multiple consequence relations. We will argue that for this aim the most beneficial proof-theoretical realization is to use sequent calculi with (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Truth and Falsehood: An Inquiry Into Generalized Logical Values.Yaroslav Shramko & Heinrich Wansing - 2011 - Dordrecht, Netherland: Springer.
    The book presents a thoroughly elaborated logical theory of generalized truth-values understood as subsets of some established set of truth values. After elucidating the importance of the very notion of a truth value in logic and philosophy, we examine some possible ways of generalizing this notion. The useful four-valued logic of first-degree entailment by Nuel Belnap and the notion of a bilattice constitute the basis for further generalizations. By doing so we elaborate the idea of a multilattice, and most notably, (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • A Few More Useful 8-valued Logics for Reasoning with Tetralattice EIGHT 4.Dmitry Zaitsev - 2009 - Studia Logica 92 (2):265-280.
    In their useful logic for a computer network Shramko and Wansing generalize initial values of Belnap’s 4-valued logic to the set 16 to be the power-set of Belnap’s 4. This generalization results in a very specific algebraic structure — the trilattice SIXTEEN3 with three orderings: information, truth and falsity. In this paper, a slightly different way of generalization is presented. As a base for further generalization a set 3 is chosen, where initial values are a — incoming data is asserted, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Removing the Oddity in First Degree Entailment.Andreas Kapsner - 2019 - Thought: A Journal of Philosophy 8 (4):240-249.
    Thought: A Journal of Philosophy, Volume 8, Issue 4, Page 240-249, December 2019.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A general framework for product representations: bilattices and beyond.L. M. Cabrer & H. A. Priestley - 2015 - Logic Journal of the IGPL 23 (5):816-841.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Proof Systems Combining Classical and Paraconsistent Negations.Norihiro Kamide - 2009 - Studia Logica 91 (2):217-238.
    New propositional and first-order paraconsistent logics (called L ω and FL ω , respectively) are introduced as Gentzen-type sequent calculi with classical and paraconsistent negations. The embedding theorems of L ω and FL ω into propositional (first-order, respectively) classical logic are shown, and the completeness theorems with respect to simple semantics for L ω and FL ω are proved. The cut-elimination theorems for L ω and FL ω are shown using both syntactical ways via the embedding theorems and semantical ways (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Basic Four-Valued Systems of Cyclic Negations.Oleg Grigoriev & Dmitry Zaitsev - 2022 - Bulletin of the Section of Logic 51 (4):507-533.
    We consider an example of four valued semantics partially inspired by quantum computations and negation-like operations occurred therein. In particular we consider a representation of so called square root of negation within this four valued semantics as an operation which acts like a cycling negation. We define two variants of logical matrices performing different orders over the set of truth values. Purely formal logical result of our study consists in axiomatizing the logics of defined matrices as the systems of binary (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Two proofs of the algebraic completeness theorem for multilattice logic.Oleg Grigoriev & Yaroslav Petrukhin - 2019 - Journal of Applied Non-Classical Logics 29 (4):358-381.
    Shramko [. Truth, falsehood, information and beyond: The American plan generalized. In K. Bimbo, J. Michael Dunn on information based logics, outstanding contributions to logic...
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • An expansion of first-order Belnap-Dunn logic.K. Sano & H. Omori - 2014 - Logic Journal of the IGPL 22 (3):458-481.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Modal multilattice logics with Tarski, Kuratowski, and Halmos operators.Oleg Grigoriev & Yaroslav Petrukhin - forthcoming - Logic and Logical Philosophy:1.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Axiomatization of a Basic Logic of Logical Bilattices.Mitio Takano - 2016 - Bulletin of the Section of Logic 45 (2).
    A sequential axiomatization is given for the 16-valued logic that has been proposed by Shramko-Wansing as a candidate for the basic logic of logical bilattices.
    Download  
     
    Export citation  
     
    Bookmark  
  • Gentzenization of Trilattice Logics.Mitio Takano - 2016 - Studia Logica 104 (5):917-929.
    Sequent calculi for trilattice logics, including those that are determined by the truth entailment, the falsity entailment and their intersection, are given. This partly answers the problems in Shramko-Wansing.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Entailment relations and/as truth values.Yaroslav Shramko & Heinrich Wansing - 2007 - Bulletin of the Section of Logic 36 (3/4):131-143.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Truth values.Yaroslav Shramko - 2010 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Kripke-Completeness and Cut-elimination Theorems for Intuitionistic Paradefinite Logics With and Without Quasi-Explosion.Norihiro Kamide - 2020 - Journal of Philosophical Logic 49 (6):1185-1212.
    Two intuitionistic paradefinite logics N4C and N4C+ are introduced as Gentzen-type sequent calculi. These logics are regarded as a combination of Nelson’s paraconsistent four-valued logic N4 and Wansing’s basic constructive connexive logic C. The proposed logics are also regarded as intuitionistic variants of Arieli, Avron, and Zamansky’s ideal paraconistent four-valued logic 4CC. The logic N4C has no quasi-explosion axiom that represents a relationship between conflation and paraconsistent negation, but the logic N4C+ has this axiom. The Kripke-completeness and cut-elimination theorems for (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Suszko’s Thesis, Inferential Many-valuedness, and the Notion of a Logical System.Heinrich Wansing & Yaroslav Shramko - 2008 - Studia Logica 88 (3):405-429.
    According to Suszko’s Thesis, there are but two logical values, true and false. In this paper, R. Suszko’s, G. Malinowski’s, and M. Tsuji’s analyses of logical twovaluedness are critically discussed. Another analysis is presented, which favors a notion of a logical system as encompassing possibly more than one consequence relation. [A] fundamental problem concerning many-valuedness is to know what it really is. [13, p. 281].
    Download  
     
    Export citation  
     
    Bookmark   24 citations