Switch to: References

Citations of:

Generalized Kripke Frames

Studia Logica 84 (2):241-275 (2006)

Add citations

You must login to add citations.
  1. Modal translation of substructural logics.Chrysafis Hartonas - 2020 - Journal of Applied Non-Classical Logics 30 (1):16-49.
    In an article dating back in 1992, Kosta Došen initiated a project of modal translations in substructural logics, aiming at generalising the well-known Gödel–McKinsey–Tarski translation of intuitionistic logic into S4. Došen's translation worked well for (variants of) BCI and stronger systems (BCW, BCK), but not for systems below BCI. Dropping structural rules results in logic systems without distribution. In this article, we show, via translation, that every substructural (indeed, every non-distributive) logic is a fragment of a corresponding sorted, residuated (multi) (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Game-theoretic semantics for non-distributive logics.Chrysafis Hartonas - 2019 - Logic Journal of the IGPL 27 (5):718-742.
    We introduce game-theoretic semantics for systems without the conveniences of either a De Morgan negation, or of distribution of conjunction over disjunction and conversely. Much of game playing rests on challenges issued by one player to the other to satisfy, or refute, a sentence, while forcing him/her to move to some other place in the game’s chessboard-like configuration. Correctness of the game-theoretic semantics is proven for both a training game, corresponding to Positive Lattice Logic and for more advanced games for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Duality Results for (Co)Residuated Lattices.Chrysafis Hartonas - 2019 - Logica Universalis 13 (1):77-99.
    We present dualities for implicative and residuated lattices. In combination with our recent article on a discrete duality for lattices with unary modal operators, the present article contributes in filling in a gap in the development of Orłowska and Rewitzky’s research program of discrete dualities, which seemed to have stumbled on the case of non-distributive lattices with operators. We discuss dualities via truth, which are essential in relating the non-distributive logic of two-sorted frames with their sorted, residuated modal logic, as (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Order-Dual Relational Semantics for Non-distributive Propositional Logics: A General Framework.Chrysafis Hartonas - 2018 - Journal of Philosophical Logic 47 (1):67-94.
    The contribution of this paper lies with providing a systematically specified and intuitive interpretation pattern and delineating a class of relational structures and models providing a natural interpretation of logical operators on an underlying propositional calculus of Positive Lattice Logic and subsequently proving a generic completeness theorem for the related class of logics, sometimes collectively referred to as Generalized Galois Logics.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Canonical Extensions and Relational Representations of Lattices with Negation.Agostinho Almeida - 2009 - Studia Logica 91 (2):171-199.
    This work is part of a wider investigation into lattice-structured algebras and associated dual representations obtained via the methodology of canonical extensions. To this end, here we study lattices, not necessarily distributive, with negation operations. We consider equational classes of lattices equipped with a negation operation ¬ which is dually self-adjoint (the pair (¬,¬) is a Galois connection) and other axioms are added so as to give classes of lattices in which the negation is De Morgan, orthonegation, antilogism, pseudocomplementation or (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Sahlqvist theorem for substructural logic.Tomoyuki Suzuki - 2013 - Review of Symbolic Logic 6 (2):229-253.
    In this paper, we establish the first-order definability of sequents with consistent variable occurrence on bi-approximation semantics by means of the Sahlqvist–van Benthem algorithm. Then together with the canonicity results in Suzuki (2011), this allows us to establish a Sahlqvist theorem for substructural logic. Our result is not limited to substructural logic but is also easily applicable to other lattice-based logics.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • B-frame duality.Guillaume Massas - 2023 - Annals of Pure and Applied Logic 174 (5):103245.
    This paper introduces the category of b-frames as a new tool in the study of complete lattices. B-frames can be seen as a generalization of posets, which play an important role in the representation theory of Heyting algebras, but also in the study of complete Boolean algebras in forcing. This paper combines ideas from the two traditions in order to generalize some techniques and results to the wider context of complete lattices. In particular, we lift a representation theorem of Allwein (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Countably Many Weakenings of Belnap–Dunn Logic.Minghui Ma & Yuanlei Lin - 2020 - Studia Logica 108 (2):163-198.
    Every Berman’s variety \ which is the subvariety of Ockham algebras defined by the equation \ and \) determines a finitary substitution invariant consequence relation \. A sequent system \ is introduced as an axiomatization of the consequence relation \. The system \ is characterized by a single finite frame \ under the frame semantics given for the formal language. By the duality between frames and algebras, \ can be viewed as a \-valued logic as it is characterized by a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Lattice logic as a fragment of (2-sorted) residuated modal logic.Chrysafis Hartonas - 2019 - Journal of Applied Non-Classical Logics 29 (2):152-170.
    ABSTRACTCorrespondence and Shalqvist theories for Modal Logics rely on the simple observation that a relational structure is at the same time the basis for a model of modal logic and for a model of first-order logic with a binary predicate for the accessibility relation. If the underlying set of the frame is split into two components,, and, then frames are at the same time the basis for models of non-distributive lattice logic and of two-sorted, residuated modal logic. This suggests that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Stone duality for lattice expansions.Chrysafis Hartonas - 2018 - Logic Journal of the IGPL 26 (5):475-504.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Leo Esakia on Duality in Modal and Intuitionistic Logics.Guram Bezhanishvili (ed.) - 2014 - Dordrecht, Netherland: Springer.
    This volume is dedicated to Leo Esakia's contributions to the theory of modal and intuitionistic systems. Consisting of 10 chapters, written by leading experts, this volume discusses Esakia’s original contributions and consequent developments that have helped to shape duality theory for modal and intuitionistic logics and to utilize it to obtain some major results in the area. Beginning with a chapter which explores Esakia duality for S4-algebras, the volume goes on to explore Esakia duality for Heyting algebras and its generalizations (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Algorithmic correspondence and canonicity for non-distributive logics.Willem Conradie & Alessandra Palmigiano - 2019 - Annals of Pure and Applied Logic 170 (9):923-974.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Relational semantics for full linear logic.Dion Coumans, Mai Gehrke & Lorijn van Rooijen - 2014 - Journal of Applied Logic 12 (1):50-66.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Canonical Extensions and Kripke–Galois Semantics for Non-distributive Logics.Chrysafis Hartonas - 2018 - Logica Universalis 12 (3-4):397-422.
    This article presents an approach to the semantics of non-distributive propositional logics that is based on a lattice representation theorem that delivers a canonical extension of the lattice. Our approach supports both a plain Kripke-style semantics and, by restriction, a general frame semantics. Unlike the framework of generalized Kripke frames, the semantic approach presented in this article is suitable for modeling applied logics, as it respects the intended interpretation of the logical operators. This is made possible by restricting admissible interpretations.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Order- dual realational semantics for non-distributive propositional logics.Chrysafis Hartonas - 2016 - Logic Journal of the IGPL 25 (2):145-182.
    This article addresses and resolves some issues of relational, Kripke-style, semantics for the logics of bounded lattice expansions with operators of well-defined distribution types, focusing on the case where the underlying lattice is not assumed to be distributive. It therefore falls within the scope of the theory of Generalized Galois Logics, introduced by Dunn, and it contributes to its extension. We introduce order-dual relational semantics and present a semantic analysis and completeness theorems for non-distributive lattice logic with n -ary additive (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Distributivity on Bi-Approximation Semantics.Tomoyuki Suzuki - 2016 - Notre Dame Journal of Formal Logic 57 (3):411-430.
    In this paper, we give a possible characterization of the distributivity on bi-approximation semantics. To this end, we introduce new notions of special elements on polarities and show that the distributivity is first-order definable on bi-approximation semantics. In addition, we investigate the dual representation of those structures and compare them with bi-approximation semantics for intuitionistic logic. We also discuss that two different methods to validate the distributivity—by the splitters and by the adjointness—can be explicated with the help of the axiom (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Symmetric Categorial Grammar.Michael Moortgat - 2009 - Journal of Philosophical Logic 38 (6):681-710.
    The Lambek-Grishin calculus is a symmetric version of categorial grammar obtained by augmenting the standard inventory of type-forming operations (product and residual left and right division) with a dual family: coproduct, left and right difference. Interaction between these two families is provided by distributivity laws. These distributivity laws have pleasant invariance properties: stability of interpretations for the Curry-Howard derivational semantics, and structure-preservation at the syntactic end. The move to symmetry thus offers novel ways of reconciling the demands of natural language (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Modal and temporal extensions of non-distributive propositional logics.Chrysafis Hartonas - 2016 - Logic Journal of the IGPL 24 (2):156-185.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Choice-Free Dualities for Lattice Expansions: Application to Logics with a Negation Operator.Chrysafis Hartonas - forthcoming - Studia Logica:1-46.
    Constructive dualities have recently been proposed for some lattice-based algebras and a related project has been outlined by Holliday and Bezhanishvili, aiming at obtaining “choice-free spatial dualities for other classes of algebras [ $$\ldots $$ ], giving rise to choice-free completeness proofs for non-classical logics”. We present in this article a way to complete the Holliday–Bezhanishvili project (uniformly, for any normal lattice expansion). This is done by recasting in a choice-free manner recent relational representation and duality results by the author. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Definable Operators on Stable Set Lattices.Robert Goldblatt - 2020 - Studia Logica 108 (6):1263-1280.
    A fundamental result from Boolean modal logic states that a first-order definable class of Kripke frames defines a logic that is validated by all of its canonical frames. We generalise this to the level of non-distributive logics that have a relational semantics provided by structures based on polarities. Such structures have associated complete lattices of stable subsets, and these have been used to construct canonical extensions of lattice-based algebras. We study classes of structures that are closed under ultraproducts and whose (...)
    Download  
     
    Export citation  
     
    Bookmark