Switch to: References

Add citations

You must login to add citations.
  1. Rank-into-rank hypotheses and the failure of GCH.Vincenzo Dimonte & Sy-David Friedman - 2014 - Archive for Mathematical Logic 53 (3-4):351-366.
    In this paper we are concerned about the ways GCH can fail in relation to rank-into-rank hypotheses, i.e., very large cardinals usually denoted by I3, I2, I1 and I0. The main results are a satisfactory analysis of the way the power function can vary on regular cardinals in the presence of rank-into-rank hypotheses and the consistency under I0 of the existence of j:Vλ+1≺Vλ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j : V_{\lambda+1} {\prec} V_{\lambda+1}}$$\end{document} with the failure of GCH (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Consecutive Singular Cardinals and the Continuum Function.Arthur W. Apter & Brent Cody - 2013 - Notre Dame Journal of Formal Logic 54 (2):125-136.
    We show that from a supercompact cardinal $\kappa$, there is a forcing extension $V[G]$ that has a symmetric inner model $N$ in which $\mathrm {ZF}+\lnot\mathrm {AC}$ holds, $\kappa$ and $\kappa^{+}$ are both singular, and the continuum function at $\kappa$ can be precisely controlled, in the sense that the final model contains a sequence of distinct subsets of $\kappa$ of length equal to any predetermined ordinal. We also show that the above situation can be collapsed to obtain a model of $\mathrm (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The consistency strength of choiceless failures of SCH.Arthur W. Apter & Peter Koepke - 2010 - Journal of Symbolic Logic 75 (3):1066-1080.
    We determine exact consistency strengths for various failures of the Singular Cardinals Hypothesis (SCH) in the setting of the Zermelo-Fraenkel axiom system ZF without the Axiom of Choice (AC). By the new notion of parallel Prikry forcing that we introduce, we obtain surjective failures of SCH using only one measurable cardinal, including a surjective failure of Shelah's pcf theorem about the size of the power set of $\aleph _{\omega}$ . Using symmetric collapses to $\aleph _{\omega}$ , $\aleph _{\omega _{1}}$ , (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Diagonal Prikry extensions.James Cummings & Matthew Foreman - 2010 - Journal of Symbolic Logic 75 (4):1383-1402.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The Proper Forcing Axiom and the Singular Cardinal Hypothesis.Matteo Viale - 2006 - Journal of Symbolic Logic 71 (2):473 - 479.
    We show that the Proper Forcing Axiom implies the Singular Cardinal Hypothesis. The proof uses the reflection principle MRP introduced by Moore in [11].
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Modified extender based forcing.Dima Sinapova & Spencer Unger - 2016 - Journal of Symbolic Logic 81 (4):1432-1443.
    Download  
     
    Export citation  
     
    Bookmark  
  • The short extenders gap three forcing using a morass.Carmi Merimovich - 2011 - Archive for Mathematical Logic 50 (1-2):115-135.
    We show how to construct Gitik’s short extenders gap-3 forcing using a morass, and that the forcing notion is of Prikry type.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The sharp for the Chang model is small.William J. Mitchell - 2017 - Archive for Mathematical Logic 56 (7-8):935-982.
    Woodin has shown that if there is a measurable Woodin cardinal then there is, in an appropriate sense, a sharp for the Chang model. We produce, in a weaker sense, a sharp for the Chang model using only the existence of a cardinal \ having an extender of length \.
    Download  
     
    Export citation  
     
    Bookmark  
  • Short Extenders Forcings I.Moti Gitik - 2012 - Journal of Mathematical Logic 12 (2):1250009.
    The purpose of the present paper is to present new methods of blowing up the power of a singular cardinal κ of cofinality ω. New PCF configurations are obtained. The techniques developed here will be used in a subsequent paper to construct a model with a countable set which pcf has cardinality ℵ1.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The short extenders gap two forcing is of Prikry type.Carmi Merimovich - 2009 - Archive for Mathematical Logic 48 (8):737-747.
    We show that Gitik’s short extender gap-2 forcing is of Prikry type.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Short extenders forcings – doing without preparations.Moti Gitik - 2020 - Annals of Pure and Applied Logic 171 (5):102787.
    We introduce certain morass type structures and apply them to blowing up powers of singular cardinals. As a bonus, a forcing for adding clubs with finite conditions to higher cardinals is obtained.
    Download  
     
    Export citation  
     
    Bookmark  
  • On gaps under GCH type assumptions.Moti Gitik - 2003 - Annals of Pure and Applied Logic 119 (1-3):1-18.
    We prove equiconsistency results concerning gaps between a singular strong limit cardinal κ of cofinality 0 and its power under assumptions that 2κ=κ+δ+1 for δ<κ and some weak form of the Singular Cardinal Hypothesis below κ. Together with the previous results this basically completes the study of consistency strength of the various gaps between such κ and its power under GCH type assumptions below.
    Download  
     
    Export citation  
     
    Bookmark   4 citations