Switch to: References

Add citations

You must login to add citations.
  1. Pincherle's theorem in reverse mathematics and computability theory.Dag Normann & Sam Sanders - 2020 - Annals of Pure and Applied Logic 171 (5):102788.
    We study the logical and computational properties of basic theorems of uncountable mathematics, in particular Pincherle's theorem, published in 1882. This theorem states that a locally bounded function is bounded on certain domains, i.e. one of the first ‘local-to-global’ principles. It is well-known that such principles in analysis are intimately connected to (open-cover) compactness, but we nonetheless exhibit fundamental differences between compactness and Pincherle's theorem. For instance, the main question of Reverse Mathematics, namely which set existence axioms are necessary to (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Two kinds of fixed point theorems and reverse mathematics.Weiguang Peng & Takeshi Yamazaki - 2017 - Mathematical Logic Quarterly 63 (5):454-461.
    In this paper, we investigate the logical strength of two types of fixed point theorems in the context of reverse mathematics. One is concerned with extensions of the Banach contraction principle. Among theorems in this type, we mainly show that the Caristi fixed point theorem is equivalent to math formula over math formula. The other is dedicated to topological fixed point theorems such as the Brouwer fixed point theorem. We introduce some variants of the Fan-Browder fixed point theorem and the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On effectively closed sets of effective strong measure zero.Kojiro Higuchi & Takayuki Kihara - 2014 - Annals of Pure and Applied Logic 165 (9):1445-1469.
    The strong measure zero sets of reals have been widely studied in the context of set theory of the real line. The notion of strong measure zero is straightforwardly effectivized. A set of reals is said to be of effective strong measure zero if for any computable sequence {εn}n∈N{εn}n∈N of positive rationals, a sequence of intervals InIn of diameter εnεn covers the set. We observe that a set is of effective strong measure zero if and only if it is of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (15 other versions)2010 European Summer Meeting of the Association for Symbolic Logic. Logic Colloquium '10.Uri Abraham & Ted Slaman - 2011 - Bulletin of Symbolic Logic 17 (2):272-329.
    Download  
     
    Export citation  
     
    Bookmark  
  • Open questions in reverse mathematics.Antonio Montalbán - 2011 - Bulletin of Symbolic Logic 17 (3):431-454.
    We present a list of open questions in reverse mathematics, including some relevant background information for each question. We also mention some of the areas of reverse mathematics that are starting to be developed and where interesting open question may be found.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Fundamental notions of analysis in subsystems of second-order arithmetic.Jeremy Avigad - 2006 - Annals of Pure and Applied Logic 139 (1):138-184.
    We develop fundamental aspects of the theory of metric, Hilbert, and Banach spaces in the context of subsystems of second-order arithmetic. In particular, we explore issues having to do with distances, closed subsets and subspaces, closures, bases, norms, and projections. We pay close attention to variations that arise when formalizing definitions and theorems, and study the relationships between them.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The polarized Ramsey’s theorem.Damir D. Dzhafarov & Jeffry L. Hirst - 2009 - Archive for Mathematical Logic 48 (2):141-157.
    We study the effective and proof-theoretic content of the polarized Ramsey’s theorem, a variant of Ramsey’s theorem obtained by relaxing the definition of homogeneous set. Our investigation yields a new characterization of Ramsey’s theorem in all exponents, and produces several combinatorial principles which, modulo bounding for ${\Sigma^0_2}$ formulas, lie (possibly not strictly) between Ramsey’s theorem for pairs and the stable Ramsey’s theorem for pairs.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Mass problems and randomness.Stephen G. Simpson - 2005 - Bulletin of Symbolic Logic 11 (1):1-27.
    A mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if every member of Q Turing computes a member of P. We say that P is strongly reducible to Q if every member of Q Turing computes a member of P via a fixed Turing functional. The weak degrees and strong degrees are the equivalence classes of mass problems under weak and strong reducibility, respectively. We (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Refining the Taming of the Reverse Mathematics Zoo.Sam Sanders - 2018 - Notre Dame Journal of Formal Logic 59 (4):579-597.
    Reverse mathematics is a program in the foundations of mathematics. It provides an elegant classification in which the majority of theorems of ordinary mathematics fall into only five categories, based on the “big five” logical systems. Recently, a lot of effort has been directed toward finding exceptional theorems, that is, those which fall outside the big five. The so-called reverse mathematics zoo is a collection of such exceptional theorems. It was previously shown that a number of uniform versions of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Representations and the Foundations of Mathematics.Sam Sanders - 2022 - Notre Dame Journal of Formal Logic 63 (1):1-28.
    The representation of mathematical objects in terms of (more) basic ones is part and parcel of (the foundations of) mathematics. In the usual foundations of mathematics, namely, ZFC set theory, all mathematical objects are represented by sets, while ordinary, namely, non–set theoretic, mathematics is represented in the more parsimonious language of second-order arithmetic. This paper deals with the latter representation for the rather basic case of continuous functions on the reals and Baire space. We show that the logical strength of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Uniform Almost Everywhere Domination.Peter Cholak, Noam Greenberg & Joseph S. Miller - 2006 - Journal of Symbolic Logic 71 (3):1057 - 1072.
    We explore the interaction between Lebesgue measure and dominating functions. We show, via both a priority construction and a forcing construction, that there is a function of incomplete degree that dominates almost all degrees. This answers a question of Dobrinen and Simpson, who showed that such functions are related to the proof-theoretic strength of the regularity of Lebesgue measure for Gδ sets. Our constructions essentially settle the reverse mathematical classification of this principle.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Forcing with bushy trees.Mushfeq Khan & Joseph S. Miller - 2017 - Bulletin of Symbolic Logic 23 (2):160-180.
    We present several results that rely on arguments involving the combinatorics of “bushy trees”. These include the fact that there are arbitrarily slow-growing diagonally noncomputable functions that compute no Kurtz random real, as well as an extension of a result of Kumabe in which we establish that there are DNC functions relative to arbitrary oracles that are of minimal Turing degree. Along the way, we survey some of the existing instances of bushy tree arguments in the literature.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Separation and weak könig's lemma.A. Humphreys & Stephen Simpson - 1999 - Journal of Symbolic Logic 64 (1):268-278.
    We continue the work of [14, 3, 1, 19, 16, 4, 12, 11, 20] investigating the strength of set existence axioms needed for separable Banach space theory. We show that the separation theorem for open convex sets is equivalent to WKL 0 over RCA 0 . We show that the separation theorem for separably closed convex sets is equivalent to ACA 0 over RCA 0 . Our strategy for proving these geometrical Hahn-Banach theorems is to reduce to the finite-dimensional case (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On notions of computability-theoretic reduction between Π21 principles.Denis R. Hirschfeldt & Carl G. Jockusch - 2016 - Journal of Mathematical Logic 16 (1):1650002.
    Several notions of computability-theoretic reducibility between [Formula: see text] principles have been studied. This paper contributes to the program of analyzing the behavior of versions of Ramsey’s Theorem and related principles under these notions. Among other results, we show that for each [Formula: see text], there is an instance of RT[Formula: see text] all of whose solutions have PA degree over [Formula: see text] and use this to show that König’s Lemma lies strictly between RT[Formula: see text] and RT[Formula: see (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The computational content of Nonstandard Analysis.Sam Sanders - unknown
    Kohlenbach's proof mining program deals with the extraction of effective information from typically ineffective proofs. Proof mining has its roots in Kreisel's pioneering work on the so-called unwinding of proofs. The proof mining of classical mathematics is rather restricted in scope due to the existence of sentences without computational content which are provable from the law of excluded middle and which involve only two quantifier alternations. By contrast, we show that the proof mining of classical Nonstandard Analysis has a very (...)
    Download  
     
    Export citation  
     
    Bookmark