Switch to: References

Add citations

You must login to add citations.
  1. There May Be Many Arithmetical Gödel Sentences.Kaave Lajevardi & Saeed Salehi - 2021 - Philosophia Mathematica 29 (2):278–287.
    We argue that, under the usual assumptions for sufficiently strong arithmetical theories that are subject to Gödel’s First Incompleteness Theorem, one cannot, without impropriety, talk about *the* Gödel sentence of the theory. The reason is that, without violating the requirements of Gödel’s theorem, there could be a true sentence and a false one each of which is provably equivalent to its own unprovability in the theory if the theory is unsound.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The absorption law: Or: how to Kreisel a Hilbert–Bernays–Löb.Albert Visser - 2020 - Archive for Mathematical Logic 60 (3-4):441-468.
    In this paper, we show how to construct for a given consistent theory U a $$\varSigma ^0_1$$ Σ 1 0 -predicate that both satisfies the Löb Conditions and the Kreisel Condition—even if U is unsound. We do this in such a way that U itself can verify satisfaction of an internal version of the Kreisel Condition.
    Download  
     
    Export citation  
     
    Bookmark  
  • HYPER-REF: A General Model of Reference for First-Order Logic and First-Order Arithmetic.Pablo Rivas-Robledo - 2022 - Kriterion – Journal of Philosophy 36 (2):179-205.
    In this article I present HYPER-REF, a model to determine the referent of any given expression in First-Order Logic. I also explain how this model can be used to determine the referent of a first-order theory such as First-Order Arithmetic. By reference or referent I mean the non-empty set of objects that the syntactical terms of a well-formed formula pick out given a particular interpretation of the language. To do so, I will first draw on previous work to make explicit (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Self-Reference Upfront: A Study of Self-Referential Gödel Numberings.Balthasar Grabmayr & Albert Visser - 2023 - Review of Symbolic Logic 16 (2):385-424.
    In this paper we examine various requirements on the formalisation choices under which self-reference can be adequately formalised in arithmetic. In particular, we study self-referential numberings, which immediately provide a strong notion of self-reference even for expressively weak languages. The results of this paper suggest that the question whether truly self-referential reasoning can be formalised in arithmetic is more sensitive to the underlying coding apparatus than usually believed. As a case study, we show how this sensitivity affects the formal study (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Model Theory and Proof Theory of the Global Reflection Principle.Mateusz Zbigniew Łełyk - 2023 - Journal of Symbolic Logic 88 (2):738-779.
    The current paper studies the formal properties of the Global Reflection Principle, to wit the assertion “All theorems of$\mathrm {Th}$are true,” where$\mathrm {Th}$is a theory in the language of arithmetic and the truth predicate satisfies the usual Tarskian inductive conditions for formulae in the language of arithmetic. We fix the gap in Kotlarski’s proof from [15], showing that the Global Reflection Principle for Peano Arithmetic is provable in the theory of compositional truth with bounded induction only ($\mathrm {CT}_0$). Furthermore, we (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Current Research on Gödel’s Incompleteness Theorems.Yong Cheng - 2021 - Bulletin of Symbolic Logic 27 (2):113-167.
    We give a survey of current research on Gödel’s incompleteness theorems from the following three aspects: classifications of different proofs of Gödel’s incompleteness theorems, the limit of the applicability of Gödel’s first incompleteness theorem, and the limit of the applicability of Gödel’s second incompleteness theorem.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Gödel’s Incompleteness Theorem and the Anti-Mechanist Argument: Revisited.Yong Cheng - 2020 - Studia Semiotyczne 34 (1):159-182.
    This is a paper for a special issue of Semiotic Studies devoted to Stanislaw Krajewski’s paper. This paper gives some supplementary notes to Krajewski’s on the Anti-Mechanist Arguments based on Gödel’s incompleteness theorem. In Section 3, we give some additional explanations to Section 4–6 in Krajewski’s and classify some misunderstandings of Gödel’s incompleteness theorem related to AntiMechanist Arguments. In Section 4 and 5, we give a more detailed discussion of Gödel’s Disjunctive Thesis, Gödel’s Undemonstrability of Consistency Thesis and the definability (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Step Towards Absolute Versions of Metamathematical Results.Balthasar Grabmayr - 2024 - Journal of Philosophical Logic 53 (1):247-291.
    There is a well-known gap between metamathematical theorems and their philosophical interpretations. Take Tarski’s Theorem. According to its prevalent interpretation, the collection of all arithmetical truths is not arithmetically definable. However, the underlying metamathematical theorem merely establishes the arithmetical undefinability of a set of specific Gödel codes of certain artefactual entities, such as infix strings, which are true in the standard model. That is, as opposed to its philosophical reading, the metamathematical theorem is formulated (and proved) relative to a specific (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Varieties of Self-Reference in Metamathematics.Balthasar Grabmayr, Volker Halbach & Lingyuan Ye - 2023 - Journal of Philosophical Logic 52 (4):1005-1052.
    This paper investigates the conditions under which diagonal sentences can be taken to constitute paradigmatic cases of self-reference. We put forward well-motivated constraints on the diagonal operator and the coding apparatus which separate paradigmatic self-referential sentences, for instance obtained via Gödel’s diagonalization method, from accidental diagonal sentences. In particular, we show that these constraints successfully exclude refutable Henkin sentences, as constructed by Kreisel.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Depth of Gödel’s Incompleteness Theorems.Yong Cheng - forthcoming - Philosophia Mathematica.
    ABSTRACT We use Gödel’s incompleteness theorems as a case study for investigating mathematical depth. We examine the philosophical question of what the depth of Gödel’s incompleteness theorems consists in. We focus on the methodological study of the depth of Gödel’s incompleteness theorems, and propose three criteria to account for the depth of the incompleteness theorems: influence, fruitfulness, and unity. Finally, we give some explanations for our account of the depth of Gödel’s incompleteness theorems.
    Download  
     
    Export citation  
     
    Bookmark