Switch to: Citations

Add references

You must login to add references.
  1. Semantics and the liar paradox.Albert Visser - 1989 - Handbook of Philosophical Logic 4 (1):617--706.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • How to Say Things with Formalisms.David Auerbach - 1992 - In Michael Detlefsen (ed.), Proof, Logic and Formalization. London, England: Routledge. pp. 77--93.
    Recent attention to "self-consistent" (Rosser-style) systems raises anew the question of the proper interpretation of the Gödel Second Incompleteness Theorem and its effect on Hilbert's Program. The traditional rendering and consequence is defended with new arguments justifying the intensional correctness of the derivability conditions.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Solution of a problem of Leon Henkin.M. H. Löb - 1955 - Journal of Symbolic Logic 20 (2):115-118.
    Download  
     
    Export citation  
     
    Bookmark   114 citations  
  • What does Gödel's second theorem say?Michael Detlefsen - 2001 - Philosophia Mathematica 9 (1):37-71.
    We consider a seemingly popular justification (we call it the Re-flexivity Defense) for the third derivability condition of the Hilbert-Bernays-Löb generalization of Godel's Second Incompleteness Theorem (G2). We argue that (i) in certain settings (rouglily, those where the representing theory of an arithmetization is allowed to be a proper subtheory of the represented theory), use of the Reflexivity Defense to justify the tliird condition induces a fourth condition, and that (ii) the justification of this fourth condition faces serious obstacles. We (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • String theory.John Corcoran, William Frank & Michael Maloney - 1974 - Journal of Symbolic Logic 39 (4):625-637.
    For each positive n , two alternative axiomatizations of the theory of strings over n alphabetic characters are presented. One class of axiomatizations derives from Tarski's system of the Wahrheitsbegriff and uses the n characters and concatenation as primitives. The other class involves using n character-prefixing operators as primitives and derives from Hermes' Semiotik. All underlying logics are second order. It is shown that, for each n, the two theories are definitionally equivalent [or synonymous in the sense of deBouvere]. It (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • (1 other version)Undecidable Theories.Alfred Tarski, Andrzej Mostowski & Raphael M. Robinson - 1953 - Philosophy 30 (114):278-279.
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • Representations: Philosophical Essays on the Foundations of Cognitive Science.Jerry A. Fodor - 1983 - British Journal for the Philosophy of Science 34 (2):175-182.
    Download  
     
    Export citation  
     
    Bookmark   191 citations  
  • Parts of Classes.David K. Lewis - 1991 - Mind 100 (3):394-397.
    Download  
     
    Export citation  
     
    Bookmark   656 citations  
  • Self-reference in arithmetic I.Volker Halbach & Albert Visser - 2014 - Review of Symbolic Logic 7 (4):671-691.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Transfinite induction within Peano arithmetic.Richard Sommer - 1995 - Annals of Pure and Applied Logic 76 (3):231-289.
    The relative strengths of first-order theories axiomatized by transfinite induction, for ordinals less-than 0, and formulas restricted in quantifier complexity, is determined. This is done, in part, by describing the provably recursive functions of such theories. Upper bounds for the provably recursive functions are obtained using model-theoretic techniques. A variety of additional results that come as an application of such techniques are mentioned.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Computational models: a modest role for content.Frances Egan - 2010 - Studies in History and Philosophy of Science Part A 41 (3):253-259.
    The computational theory of mind construes the mind as an information-processor and cognitive capacities as essentially representational capacities. Proponents of the view claim a central role for representational content in computational models of these capacities. In this paper I argue that the standard view of the role of representational content in computational models is mistaken; I argue that representational content is to be understood as a gloss on the computational characterization of a cognitive process.Keywords: Computation; Representational content; Cognitive capacities; Explanation.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Computing with Numbers and Other Non-syntactic Things: De re Knowledge of Abstract Objects.Stewart Shapiro - 2017 - Philosophia Mathematica 25 (2):268-281.
    ABSTRACT Michael Rescorla has argued that it makes sense to compute directly with numbers, and he faulted Turing for not giving an analysis of number-theoretic computability. However, in line with a later paper of his, it only makes sense to compute directly with syntactic entities, such as strings on a given alphabet. Computing with numbers goes via notation. This raises broader issues involving de re propositional attitudes towards numbers and other non-syntactic abstract entities.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • An Introduction to Gödel's Theorems.Peter Smith - 2009 - Bulletin of Symbolic Logic 15 (2):218-222.
    Download  
     
    Export citation  
     
    Bookmark   68 citations  
  • Proof lengths for instances of the Paris–Harrington principle.Anton Freund - 2017 - Annals of Pure and Applied Logic 168 (7):1361-1382.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Gödel's Second incompleteness theorem for Q.A. Bezboruah & J. C. Shepherdson - 1976 - Journal of Symbolic Logic 41 (2):503-512.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Acceptable notation.Stewart Shapiro - 1982 - Notre Dame Journal of Formal Logic 23 (1):14-20.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • (1 other version)Metamathematics of First-Order Arithmetic.Petr Hajék & Pavel Pudlák - 1994 - Studia Logica 53 (3):465-466.
    Download  
     
    Export citation  
     
    Bookmark   146 citations  
  • A Note on Derivability Conditions.Taishi Kurahashi - 2020 - Journal of Symbolic Logic 85 (3):1224-1253.
    We investigate relationships between versions of derivability conditions for provability predicates. We show several implications and non-implications between the conditions, and we discuss unprovability of consistency statements induced by derivability conditions. First, we classify already known versions of the second incompleteness theorem, and exhibit some new sets of conditions which are sufficient for unprovability of Hilbert–Bernays’ consistency statement. Secondly, we improve Buchholz’s schematic proof of provable$\Sigma_1$-completeness. Then among other things, we show that Hilbert–Bernays’ conditions and Löb’s conditions are mutually incomparable. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Metamathematics of First-Order Arithmetic.P. Hájek & P. Pudlák - 2000 - Studia Logica 64 (3):429-430.
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • Giving an account of provability within a theory.Peter Roeper - 2003 - Philosophia Mathematica 11 (3):332-340.
    This paper offers a justification of the ‘Hilbert-Bernays Derivability Conditions’ by considering what is required of a theory which gives an account of provability in itself.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the scheme of induction for bounded arithmetic formulas.A. J. Wilkie & J. B. Paris - 1987 - Annals of Pure and Applied Logic 35 (C):261-302.
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • Church's Thesis and the Conceptual Analysis of Computability.Michael Rescorla - 2007 - Notre Dame Journal of Formal Logic 48 (2):253-280.
    Church's thesis asserts that a number-theoretic function is intuitively computable if and only if it is recursive. A related thesis asserts that Turing's work yields a conceptual analysis of the intuitive notion of numerical computability. I endorse Church's thesis, but I argue against the related thesis. I argue that purported conceptual analyses based upon Turing's work involve a subtle but persistent circularity. Turing machines manipulate syntactic entities. To specify which number-theoretic function a Turing machine computes, we must correlate these syntactic (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • A taxonomy of deviant encodings.Paula Quinon - 2018 - In F. Manea, R. Miller & D. Nowotka (eds.), Sailing Routes in the World of Computation. CiE 2018. Lecture Notes in Computer Science, vol 10936. Springer. pp. 338-348.
    The main objective of this paper is to design a common background for various philosophical discussions about adequate conceptual analysis of “computation”.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Towards a general theory of computability.Richard Montague - 1960 - Synthese 12 (4):429 - 438.
    Download  
     
    Export citation  
     
    Bookmark   4 citations