Switch to: References

Add citations

You must login to add citations.
  1. Herbert G. Bohnert: The Last Carnapian.Benjamin Marschall - 2024 - Hopos: The Journal of the International Society for the History of Philosophy of Science 14 (2):361-396.
    Herbert G. Bohnert (1918–84) was a student and lifelong friend of Carnap. He wrote a doctoral thesis on Ramsey sentences and, after wavering between academia and the computer industry, eventually taught at Michigan State University. Bohnert defended Carnapian positions throughout his career and was especially productive in the 1970s. Unfortunately, Carnap’s philosophy was deemed hopelessly out of date during this period, and partly for this reason, Bohnert is almost completely forgotten today. This fate is undeserved. In this article, I reconstruct (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The parallel structure of mathematical reasoning.Andrew Aberdein - 2012 - In Alison Pease & Brendan Larvor (eds.), Proceedings of the Symposium on Mathematical Practice and Cognition Ii: A Symposium at the Aisb/Iacap World Congress 2012. Society for the Study of Artificial Intelligence and the Simulation of Behaviour. pp. 7--14.
    This paper proposes an account of mathematical reasoning as parallel in structure: the arguments which mathematicians use to persuade each other of their results comprise the argumentational structure; the inferential structure is composed of derivations which offer a formal counterpart to these arguments. Some conflicts about the foundations of mathematics correspond to disagreements over which steps should be admissible in the inferential structure. Similarly, disagreements over the admissibility of steps in the argumentational structure correspond to different views about mathematical practice. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the Quinean-analyticity of mathematical propositions.Gregory Lavers - 2012 - Philosophical Studies 159 (2):299-319.
    This paper investigates the relation between Carnap and Quine’s views on analyticity on the one hand, and their views on philosophical analysis or explication on the other. I argue that the stance each takes on what constitutes a successful explication largely dictates the view they take on analyticity. I show that although acknowledged by neither party (in fact Quine frequently expressed his agreement with Carnap on this subject) their views on explication are substantially different. I argue that this difference not (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Benacerraf’s dilemma and informal mathematics.Gregory Lavers - 2009 - Review of Symbolic Logic 2 (4):769-785.
    This paper puts forward and defends an account of mathematical truth, and in particular an account of the truth of mathematical axioms. The proposal attempts to be completely nonrevisionist. In this connection, it seeks to satisfy simultaneously both horns of Benacerrafs work on informal rigour. Kreisel defends the view that axioms are arrived at by a rigorous examination of our informal notions, as opposed to being stipulated or arrived at by trial and error. This view is then supplemented by a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Frege, Carnap, and Explication: ‘Our Concern Here Is to Arrive at a Concept of Number Usable for the Purpose of Science’.Gregory Lavers - 2013 - History and Philosophy of Logic 34 (3):225-41.
    This paper argues that Carnap both did not view and should not have viewed Frege's project in the foundations of mathematics as misguided metaphysics. The reason for this is that Frege's project was to give an explication of number in a very Carnapian sense — something that was not lost on Carnap. Furthermore, Frege gives pragmatic justification for the basic features of his system, especially where there are ontological considerations. It will be argued that even on the question of the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Carnap’s Early Semantics.Georg Schiemer - 2013 - Erkenntnis 78 (3):487-522.
    This paper concerns Carnap’s early contributions to formal semantics in his work on general axiomatics between 1928 and 1936. Its main focus is on whether he held a variable domain conception of models. I argue that interpreting Carnap’s account in terms of a fixed domain approach fails to describe his premodern understanding of formal models. By drawing attention to the second part of Carnap’s unpublished manuscript Untersuchungen zur allgemeinen Axiomatik, an alternative interpretation of the notions ‘model’, ‘model extension’ and ‘submodel’ (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations