Switch to: References

Add citations

You must login to add citations.
  1. Formalizing Darwinism, Naturalizing Mathematics.Fabio Sterpetti - 2015 - Paradigmi. Rivista di Critica Filosofica 33 (2):133-160.
    In the last decades two different and apparently unrelated lines of research have increasingly connected mathematics and evolutionism. Indeed, on the one hand different attempts to formalize darwinism have been made, while, on the other hand, different attempts to naturalize logic and mathematics have been put forward. Those researches may appear either to be completely distinct or at least in some way convergent. They may in fact both be seen as supporting a naturalistic stance. Evolutionism is indeed crucial for a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Revisiting generality in biology: systems biology and the quest for design principles.Sara Green - 2015 - Biology and Philosophy 30 (5):629-652.
    Due to the variation, contingency and complexity of living systems, biology is often taken to be a science without fundamental theories, laws or general principles. I revisit this question in light of the quest for design principles in systems biology and show that different views can be reconciled if we distinguish between different types of generality. The philosophical literature has primarily focused on generality of specific models or explanations, or on the heuristic role of abstraction. This paper takes a different (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The normative structure of mathematization in systematic biology.Beckett Sterner & Scott Lidgard - 2014 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 46 (1):44-54.
    We argue that the mathematization of science should be understood as a normative activity of advocating for a particular methodology with its own criteria for evaluating good research. As a case study, we examine the mathematization of taxonomic classification in systematic biology. We show how mathematization is a normative activity by contrasting its distinctive features in numerical taxonomy in the 1960s with an earlier reform advocated by Ernst Mayr starting in the 1940s. Both Mayr and the numerical taxonomists sought to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Practical Value of Biological Information for Research.Beckett Sterner - 2014 - Philosophy of Science 81 (2):175-194,.
    Many philosophers are skeptical about the scientific value of the concept of biological information. However, several have recently proposed a more positive view of ascribing information as an exercise in scientific modeling. I argue for an alternative role: guiding empirical data collection for the sake of theorizing about the evolution of semantics. I clarify and expand on Bergstrom and Rosvall’s suggestion of taking a “diagnostic” approach that defines biological information operationally as a procedure for collecting empirical cases. The more recent (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Exploring the Status of Population Genetics: The Role of Ecology.Roberta L. Millstein - 2013 - Biological Theory 7 (4):346-357.
    The status of population genetics has become hotly debated among biologists and philosophers of biology. Many seem to view population genetics as relatively unchanged since the Modern Synthesis and have argued that subjects such as development were left out of the Synthesis. Some have called for an extended evolutionary synthesis or for recognizing the insignificance of population genetics. Yet others such as Michael Lynch have defended population genetics, declaring "nothing in evolution makes sense except in the light of population genetics" (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Question-driven stepwise experimental discoveries in biochemistry: two case studies.Michael Fry - 2022 - History and Philosophy of the Life Sciences 44 (2):1-52.
    Philosophers of science diverge on the question what drives the growth of scientific knowledge. Most of the twentieth century was dominated by the notion that theories propel that growth whereas experiments play secondary roles of operating within the theoretical framework or testing theoretical predictions. New experimentalism, a school of thought pioneered by Ian Hacking in the early 1980s, challenged this view by arguing that theory-free exploratory experimentation may in many cases effectively probe nature and potentially spawn higher evidence-based theories. Because (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Coordination in theory extension: How Reichenbach can help us understand endogenization in evolutionary biology.Michele Luchetti - 2021 - Synthese (3-4):1-26.
    Reichenbach’s early solution to the scientific problem of how abstract mathematical representations can successfully express real phenomena is rooted in his view of coordination. In this paper, I claim that a Reichenbach-inspired, ‘layered’ view of coordination provides us with an effective tool to systematically analyse some epistemic and conceptual intricacies resulting from a widespread theorising strategy in evolutionary biology, recently discussed by Okasha (2018) as ‘endogenization’. First, I argue that endogenization is a form of extension of natural selection theory that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Review of Sabina Leonelli’s Data-Centric Biology: A Philosophical Study. [REVIEW]Beckett Sterner - 2018 - Philosophy of Science 85 (3):540-550.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Taxonomy for Humans or Computers? Cognitive Pragmatics for Big Data.Beckett Sterner & Nico M. Franz - 2017 - Biological Theory 12 (2):99-111.
    Criticism of big data has focused on showing that more is not necessarily better, in the sense that data may lose their value when taken out of context and aggregated together. The next step is to incorporate an awareness of pitfalls for aggregation into the design of data infrastructure and institutions. A common strategy minimizes aggregation errors by increasing the precision of our conventions for identifying and classifying data. As a counterpoint, we argue that there are pragmatic trade-offs between precision (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Units and levels of selection.Elisabeth Lloyd - 2008 - Stanford Encyclopedia of Philosophy.
    The theory of evolution by natural selection is, perhaps, the crowning intellectual achievement of the biological sciences. There is, however, considerable debate about which entity or entities are selected and what it is that fits them for that role. This article aims to clarify what is at issue in these debates by identifying four distinct, though often confused, concerns and then identifying how the debates on what constitute the units of selection depend to a significant degree on which of these (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Beyond Generalized Darwinism. II. More Things in Heaven and Earth.Werner Callebaut - 2011 - Biological Theory 6 (4):351-365.
    This is the second of two articles in which I reflect on “generalized Darwinism” as currently discussed in evolutionary economics. In the companion article (Callebaut, Biol Theory 6. doi: 10.1007/s13752-013-0086-2, 2011, this issue) I approached evolutionary economics from the naturalistic perspectives of evolutionary epistemology and the philosophy of biology, contrasted evolutionary economists’ cautious generalizations of Darwinism with “imperialistic” proposals to unify the behavioral sciences, and discussed the continued resistance to biological ideas in the social sciences. Here I assess Generalized Darwinism (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Structure of Scientific Theories.Rasmus Grønfeldt Winther - 2015 - Stanford Encyclopedia of Philosophy.
    Scientific inquiry has led to immense explanatory and technological successes, partly as a result of the pervasiveness of scientific theories. Relativity theory, evolutionary theory, and plate tectonics were, and continue to be, wildly successful families of theories within physics, biology, and geology. Other powerful theory clusters inhabit comparatively recent disciplines such as cognitive science, climate science, molecular biology, microeconomics, and Geographic Information Science (GIS). Effective scientific theories magnify understanding, help supply legitimate explanations, and assist in formulating predictions. Moving from their (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • The orbital: a pivotal concept in the relationship between chemistry and physics? A comment to the work by Fortin and coauthors.Giovanni Villani, Elena Ghibaudi & Luigi Cerruti - 2017 - Foundations of Chemistry 20 (2):89-97.
    The present work is a comment of a recent paper by Fortin and coauthors in which the authors propose the introduction of Bohmian mechanics in the philosophy of chemistry and the use of standard quantum mechanics as a mere instrument of prediction. This way would allow overcoming the obstacles found in linking molecular chemistry and quantum mechanics. Starting from some remarks on the orbital concept, we highlight and discuss some general issues that need to be taken into account when two (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Classificatory Theory in Biology.Sabina Leonelli - 2013 - Biological Theory 7 (4):338-345.
    Scientific classification has long been recognized as involving a specific style of reasoning and doing research, and as occasionally affecting the development of scientific theories. However, the role played by classificatory activities in generating theories has not been closely investigated within the philosophy of science. I argue that classificatory systems can themselves become a form of theory, which I call classificatory theory, when they come to formalize and express the scientific significance of the elements being classified. This is particularly evident (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Revisiting generality in the life sciences: Systems biology and the quest for general principles.Sara Green - unknown
    Due to the variation, contingency and complexity of living systems, biology is often taken to be a science without fundamental theories, laws or general principles. I revisit this question in light of the quest for design principles in systems biology and show that different views can be reconciled if we distinguish between different types of generality. The philosophical literature has primarily focused on generality of specific models or explanations, or on the heuristic role of abstraction. This paper takes a different (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantification and Realism: Locating Semiosis in the Description of Biological Systems.Claudio J. Rodríguez Higuera - 2021 - Biosemiotics 14 (2):241-252.
    What do we quantify when we attempt to quantify semiotic systems and theories? How sound are potential quantifications in terms of interpretive values within some varieties of semiotic theory? We will make a distinction between formalization and quantification in order to understand what to quantify, how to quantify it and why quantification may be a desirable outcome for semiotic theory. The implications of this stance may be relevant and philosophically interesting in light of the naturalized project of biosemiotics. In this (...)
    Download  
     
    Export citation  
     
    Bookmark