Switch to: References

Add citations

You must login to add citations.
  1. Strong Depth Relevance.Shay Allen Logan - 2021 - Australasian Journal of Logic 18 (6):645-656.
    Relevant logics infamously have the property that they only validate a conditional when some propositional variable is shared between its antecedent and consequent. This property has been strengthened in a variety of ways over the last half-century. Two of the more famous of these strengthenings are the strong variable sharing property and the depth relevance property. In this paper I demonstrate that an appropriate class of relevant logics has a property that might naturally be characterized as the supremum of these (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Incompleteness of Intuitionistic Propositional Logic with Respect to Proof-Theoretic Semantics.Thomas Piecha & Peter Schroeder-Heister - 2019 - Studia Logica 107 (1):233-246.
    Prawitz proposed certain notions of proof-theoretic validity and conjectured that intuitionistic logic is complete for them [11, 12]. Considering propositional logic, we present a general framework of five abstract conditions which any proof-theoretic semantics should obey. Then we formulate several more specific conditions under which the intuitionistic propositional calculus turns out to be semantically incomplete. Here a crucial role is played by the generalized disjunction principle. Turning to concrete semantics, we show that prominent proposals, including Prawitz’s, satisfy at least one (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Failure of Completeness in Proof-Theoretic Semantics.Thomas Piecha, Wagner de Campos Sanz & Peter Schroeder-Heister - 2015 - Journal of Philosophical Logic 44 (3):321-335.
    Several proof-theoretic notions of validity have been proposed in the literature, for which completeness of intuitionistic logic has been conjectured. We define validity for intuitionistic propositional logic in a way which is common to many of these notions, emphasizing that an appropriate notion of validity must be closed under substitution. In this definition we consider atomic systems whose rules are not only production rules, but may include rules that allow one to discharge assumptions. Our central result shows that Harrop’s rule (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Uniform proofs as a foundation for logic programming.Dale Miller, Gopalan Nadathur, Frank Pfenning & Andre Scedrov - 1991 - Annals of Pure and Applied Logic 51 (1-2):125-157.
    Miller, D., G. Nadathur, F. Pfenning and A. Scedrov, Uniform proofs as a foundation for logic programming, Annals of Pure and Applied Logic 51 125–157. A proof-theoretic characterization of logical languages that form suitable bases for Prolog-like programming languages is provided. This characterization is based on the principle that the declarative meaning of a logic program, provided by provability in a logical system, should coincide with its operational meaning, provided by interpreting logical connectives as simple and fixed search instructions. The (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Hereditarily structurally complete positive logics.Alex Citkin - 2020 - Review of Symbolic Logic 13 (3):483-502.
    Positive logics are $\{ \wedge, \vee, \to \}$-fragments of intermediate logics. It is clear that the positive fragment of $Int$ is not structurally complete. We give a description of all hereditarily structurally complete positive logics, while the question whether there is a structurally complete positive logic which is not hereditarily structurally complete, remains open.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On two problems of Harvey Friedman.Tadeusz Prucnal - 1979 - Studia Logica 38 (3):247 - 262.
    The paper considers certain properties of intermediate and moda propositional logics.The first part contains a proof of the theorem stating that each intermediate logic is closed under the Kreisel-Putnam rule xyz/(xy)(xz).
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Problems of substitution and admissibility in the modal system Grz and in intuitionistic propositional calculus.V. V. Rybakov - 1990 - Annals of Pure and Applied Logic 50 (1):71-106.
    Questions connected with the admissibility of rules of inference and the solvability of the substitution problem for modal and intuitionistic logic are considered in an algebraic framework. The main result is the decidability of the universal theory of the free modal algebra imageω extended in signature by adding constants for free generators. As corollaries we obtain: there exists an algorithm for the recognition of admissibility of rules with parameters in the modal system Grz, the substitution problem for Grz and for (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • On the rules of intermediate logics.Rosalie Iemhoff - 2006 - Archive for Mathematical Logic 45 (5):581-599.
    If the Visser rules are admissible for an intermediate logic, they form a basis for the admissible rules of the logic. How to characterize the admissible rules of intermediate logics for which not all of the Visser rules are admissible is not known. In this paper we give a brief overview of results on admissible rules in the context of intermediate logics. We apply these results to some well-known intermediate logics. We provide natural examples of logics for which the Visser (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Natural Deduction for the Sheffer Stroke and Peirce’s Arrow (and any Other Truth-Functional Connective).Richard Zach - 2015 - Journal of Philosophical Logic 45 (2):183-197.
    Methods available for the axiomatization of arbitrary finite-valued logics can be applied to obtain sound and complete intelim rules for all truth-functional connectives of classical logic including the Sheffer stroke and Peirce’s arrow. The restriction to a single conclusion in standard systems of natural deduction requires the introduction of additional rules to make the resulting systems complete; these rules are nevertheless still simple and correspond straightforwardly to the classical absurdity rule. Omitting these rules results in systems for intuitionistic versions of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On unification and admissible rules in Gabbay–de Jongh logics.Jeroen P. Goudsmit & Rosalie Iemhoff - 2014 - Annals of Pure and Applied Logic 165 (2):652-672.
    In this paper we study the admissible rules of intermediate logics. We establish some general results on extensions of models and sets of formulas. These general results are then employed to provide a basis for the admissible rules of the Gabbay–de Jongh logics and to show that these logics have finitary unification type.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Unification in superintuitionistic predicate logics and its applications.Wojciech Dzik & Piotr Wojtylak - 2019 - Review of Symbolic Logic 12 (1):37-61.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Metavaluations.Ross T. Brady - 2017 - Bulletin of Symbolic Logic 23 (3):296-323.
    This is a general account of metavaluations and their applications, which can be seen as an alternative to standard model-theoretic methodology. They work best for what are called metacomplete logics, which include the contraction-less relevant logics, with possible additions of Conjunctive Syllogism, & →.A→C, and the irrelevant, A→.B→A, these including the logic MC of meaning containment which is arguably a good entailment logic. Indeed, metavaluations focus on the formula-inductive properties of theorems of entailment form A→B, splintering into two types, M1- (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Linear temporal logic with until and next, logical consecutions.V. Rybakov - 2008 - Annals of Pure and Applied Logic 155 (1):32-45.
    While specifications and verifications of concurrent systems employ Linear Temporal Logic , it is increasingly likely that logical consequence in image will be used in the description of computations and parallel reasoning. Our paper considers logical consequence in the standard image with temporal operations image and image . The prime result is an algorithm recognizing consecutions admissible in image, so we prove that image is decidable w.r.t. admissible inference rules. As a consequence we obtain algorithms verifying the validity of consecutions (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Preservation of admissible rules when combining logics.João Rasga, Cristina Sernadas & Amílcar Sernadas - 2016 - Review of Symbolic Logic 9 (4):641-663.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Semantics of Entailment Omega.Yoko Motohama, Robert K. Meyer & Mariangiola Dezani-Ciancaglini - 2002 - Notre Dame Journal of Formal Logic 43 (3):129-145.
    This paper discusses the relation between the minimal positive relevant logic B and intersection and union type theories. There is a marvelous coincidence between these very differently motivated research areas. First, we show a perfect fit between the Intersection Type Discipline ITD and the tweaking BT of B, which saves implication and conjunction but drops disjunction . The filter models of the -calculus (and its intimate partner Combinatory Logic CL) of the first author and her coauthors then become theory models (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Hereditarily Structurally Complete Superintuitionistic Deductive Systems.Alex Citkin - 2018 - Studia Logica 106 (4):827-856.
    Propositional logic is understood as a set of theorems defined by a deductive system: a set of axioms and a set of rules. Superintuitionistic logic is a logic extending intuitionistic propositional logic \. A rule is admissible for a logic if any substitution that makes each premise a theorem, makes the conclusion a theorem too. A deductive system \ is structurally complete if any rule admissible for the logic defined by \ is derivable in \. It is known that any (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Admissible Rules of ${{mathsf{BD}_{2}}}$ and ${mathsf{GSc}}$.Jeroen P. Goudsmit - 2018 - Notre Dame Journal of Formal Logic 59 (3):325-353.
    The Visser rules form a basis of admissibility for the intuitionistic propositional calculus. We show how one can characterize the existence of covers in certain models by means of formulae. Through this characterization, we provide a new proof of the admissibility of a weak form of the Visser rules. Finally, we use this observation, coupled with a description of a generalization of the disjunction property, to provide a basis of admissibility for the intermediate logics BD2 and GSc.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Logics with the universal modality and admissible consecutions.Rybakov Vladimir - 2007 - Journal of Applied Non-Classical Logics 17 (3):383-396.
    In this paper1 we study admissible consecutions in multi-modal logics with the universal modality. We consider extensions of multi-modal logic S4n augmented with the universal modality. Admissible consecutions form the largest class of rules, under which a logic is closed. We propose an approach based on the context effective finite model property. Theorem 7, the main result of the paper, gives sufficient conditions for decidability of admissible consecutions in our logics. This theorem also provides an explicit algorithm for recognizing such (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Admissibility and refutation: some characterisations of intermediate logics.Jeroen P. Goudsmit - 2014 - Archive for Mathematical Logic 53 (7-8):779-808.
    Refutation systems are formal systems for inferring the falsity of formulae. These systems can, in particular, be used to syntactically characterise logics. In this paper, we explore the close connection between refutation systems and admissible rules. We develop technical machinery to construct refutation systems, employing techniques from the study of admissible rules. Concretely, we provide a refutation system for the intermediate logics of bounded branching, known as the Gabbay–de Jongh logics. We show that this gives a characterisation of these logics (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Some applications of Kripke models to formal systems of intuitionistic analysis.Scott Weinstein - 1979 - Annals of Mathematical Logic 16 (1):1.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Constructive Validity of a Generalized Kreisel–Putnam Rule.Ivo Pezlar - forthcoming - Studia Logica.
    In this paper, we propose a computational interpretation of the generalized Kreisel–Putnam rule, also known as the generalized Harrop rule or simply the Split rule, in the style of BHK semantics. We will achieve this by exploiting the Curry–Howard correspondence between formulas and types. First, we inspect the inferential behavior of the Split rule in the setting of a natural deduction system for intuitionistic propositional logic. This will guide our process of formulating an appropriate program that would capture the corresponding (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Argument from Proof Theory against Implicit Conventionalism.Rea Golan - 2023 - Philosophical Quarterly 74 (1):273-290.
    Conventionalism about logic is the view that logical principles hold in virtue of some linguistic conventions. According to explicit conventionalism, these conventions have to be stipulated explicitly. Explicit conventionalism is subject to a famous criticism by Quine, who accused it of leading to an infinite regress. In response to the criticism, several authors have suggested reconstructing conventionalism as implicit in our linguistic behaviour. In this paper, drawing on a distinction from proof theory between derivable and admissible rules, I argue that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On maximal intermediate predicate constructive logics.Alessandro Avellone, Camillo Fiorentini, Paolo Mantovani & Pierangelo Miglioli - 1996 - Studia Logica 57 (2-3):373 - 408.
    We extend to the predicate frame a previous characterization of the maximal intermediate propositional constructive logics. This provides a technique to get maximal intermediate predicate constructive logics starting from suitable sets of classically valid predicate formulae we call maximal nonstandard predicate constructive logics. As an example of this technique, we exhibit two maximal intermediate predicate constructive logics, yet leaving open the problem of stating whether the two logics are distinct. Further properties of these logics will be also investigated.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Prawitz's completeness conjecture: A reassessment.Peter Schroeder-Heister - 2024 - Theoria 90 (5):492-514.
    In 1973, Dag Prawitz conjectured that the calculus of intuitionistic logic is complete with respect to his notion of validity of arguments. On the background of the recent disproof of this conjecture by Piecha, de Campos Sanz and Schroeder-Heister, we discuss possible strategies of saving Prawitz's intentions. We argue that Prawitz's original semantics, which is based on the principal frame of all atomic systems, should be replaced with a general semantics, which also takes into account restricted frames of atomic systems. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Admissibility in Positive Logics.Alex Citkin - 2017 - Logica Universalis 11 (4):421-437.
    The paper studies admissibility of multiple-conclusion rules in positive logics. Using modification of a method employed by M. Wajsberg in the proof of the separation theorem, it is shown that the problem of admissibility of multiple-conclusion rules in the positive logics is equivalent to the problem of admissibility in intermediate logics defined by positive additional axioms. Moreover, a multiple-conclusion rule \ follows from a set of multiple-conclusion rules \ over a positive logic \ if and only if \ follows from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Algebraic Logic Perspective on Prucnal’s Substitution.Alex Citkin - 2016 - Notre Dame Journal of Formal Logic 57 (4):503-521.
    A term td is called a ternary deductive term for a variety of algebras V if the identity td≈r holds in V and ∈θ yields td≈td for any A∈V and any principal congruence θ on A. A connective f is called td-distributive if td)≈ f,…,td). If L is a propositional logic and V is a corresponding variety that has a TD term td, then any admissible in L rule, the premises of which contain only td-distributive operations, is derivable, and the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A mind of a non-countable set of ideas.Alexander Citkin - 2008 - Logic and Logical Philosophy 17 (1-2):23-39.
    The paper is dedicated to the 80th birthday of the outstanding Russian logician A.V. Kuznetsov. It is addressing a history of the ideas and research conducted by him in non-classical and intermediate logics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Metalogic of Intuitionistic Propositional Calculus.Alex Citkin - 2010 - Notre Dame Journal of Formal Logic 51 (4):485-502.
    With each superintuitionistic propositional logic L with a disjunction property we associate a set of modal logics the assertoric fragment of which is L . Each formula of these modal logics is interdeducible with a formula representing a set of rules admissible in L . The smallest of these logics contains only formulas representing derivable in L rules while the greatest one contains formulas corresponding to all admissible in L rules. The algebraic semantic for these logics is described.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Rudimentary Kripke models for the intuitionistic propositional calculus.Kosta Došen - 1993 - Annals of Pure and Applied Logic 62 (1):21-49.
    It is shown that the intuitionistic propositional calculus is sound and complete with respect to Kripke-style models that are not quasi-ordered. These models, called rudimentary Kripke models, differ from the ordinary intuitionistic Kripke models by making fewer assumptions about the underlying frames, but have the same conditions for valuations. However, since accessibility between points in the frames need not be reflexive, we have to assume, besides the usual intuitionistic heredity, the converse of heredity, which says that if a formula holds (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The "Relevance" of Intersection and Union Types.Mariangiola Dezani-Ciancaglini, Silvia Ghilezan & Betti Venneri - 1997 - Notre Dame Journal of Formal Logic 38 (2):246-269.
    The aim of this paper is to investigate a Curry-Howard interpretation of the intersection and union type inference system for Combinatory Logic. Types are interpreted as formulas of a Hilbert-style logic L, which turns out to be an extension of the intuitionistic logic with respect to provable disjunctive formulas (because of new equivalence relations on formulas), while the implicational-conjunctive fragment of L is still a fragment of intuitionistic logic. Moreover, typable terms are translated in a typed version, so that --typed (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Discrete linear temporal logic with current time point clusters, deciding algorithms.V. Rybakov - 2008 - Logic and Logical Philosophy 17 (1-2):143-161.
    The paper studies the logic TL(NBox+-wC) – logic of discrete linear time with current time point clusters. Its language uses modalities Diamond+ (possible in future) and Diamond- (possible in past) and special temporal operations, – Box+w (weakly necessary in future) and Box-w (weakly necessary in past). We proceed by developing an algorithm recognizing theorems of TL(NBox+-wC), so we prove that TL(NBox+-wC) is decidable. The algorithm is based on reduction of formulas to inference rules and converting the rules in special reduced (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Metacompleteness of Substructural Logics.Takahiro Seki - 2012 - Studia Logica 100 (6):1175-1199.
    Metacompleteness is used to prove properties such as the disjunction property and the existence property in the area of relevant logics. On the other hand, the disjunction property of several basic propositional substructural logics over FL has been proved using the cut elimination theorem of sequent calculi and algebraic characterization. The present paper shows that Meyer’s metavaluational technique and Slaney’s metavaluational technique can be applied to basic predicate intuitionistic substructural logics and basic predicate involutive substructural logics, respectively. As a corollary (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Induction and transfinite induction in intuitionistic systems.Bruno Scarpellini - 1972 - Annals of Mathematical Logic 4 (2):173.
    Download  
     
    Export citation  
     
    Bookmark   10 citations