Switch to: References

Add citations

You must login to add citations.
  1. Skolem and the löwenheim-skolem theorem: a case study of the philosophical significance of mathematical results.Alexander George - 1985 - History and Philosophy of Logic 6 (1):75-89.
    The dream of a community of philosophers engaged in inquiry with shared standards of evidence and justification has long been with us. It has led some thinkers puzzled by our mathematical experience to look to mathematics for adjudication between competing views. I am skeptical of this approach and consider Skolem's philosophical uses of the Löwenheim-Skolem Theorem to exemplify it. I argue that these uses invariably beg the questions at issue. I say ?uses?, because I claim further that Skolem shifted his (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Mathematics of Skolem's Paradox.Timothy Bays - 2002 - In Dale Jacquette (ed.), Philosophy of Logic. Malden, Mass.: North Holland. pp. 615--648.
    Over the years, Skolem’s Paradox has generated a fairly steady stream of philosophical discussion; nonetheless, the overwhelming consensus among philosophers and logicians is that the paradox doesn’t constitute a mathematical problem (i.e., it doesn’t constitute a real contradiction). Further, there’s general agreement as to why the paradox doesn’t constitute a mathematical problem. By looking at the way firstorder structures interpret quantifiers—and, in particular, by looking at how this interpretation changes as we move from structure to structure—we can give a technically (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Skolem Redux.W. D. Hart - 2000 - Notre Dame Journal of Formal Logic 41 (4):399--414.
    Hume's Principle requires the existence of the finite cardinals and their cardinal, but these are the only cardinals the Principle requires. Were the Principle an analysis of the concept of cardinal number, it would already be peculiar that it requires the existence of any cardinals; an analysis of bachelor is not expected to yield unmarried men. But that it requires the existence of some cardinals, the countable ones, but not others, the uncountable, makes it seem invidious; it is as if (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quine and Ontology.Oswaldo Chateaubriand - 2003 - Principia: An International Journal of Epistemology 7 (1-2):41-74.
    Ontology played a very large role in Quine’s philosophy and was one of his major preoccupations from the early 30’s to the end of his life. His work on ontology provided a basic framework for most of the discussions of ontology in analytic philosophy in the second half of the Twentieth Century. There are three main themes (and several sub-themes) that Quine developed in his work. The first is ontological commitment: What are the existential commitments of a theory? The second (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Reflections on Skolem's relativity of set-theoretical concepts.Ignagio Jane - 2001 - Philosophia Mathematica 9 (2):129-153.
    In this paper an attempt is made to present Skolem's argument, for the relativity of some set-theoretical notions as a sensible one. Skolem's critique of set theory is seen as part of a larger argument to the effect that no conclusive evidence has been given for the existence of uncountable sets. Some replies to Skolem are discussed and are shown not to affect Skolem's position, since they all presuppose the existence of uncountable sets. The paper ends with an assessment of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Meaning and existence in mathematics : on the use and abuse of the theory of models in the philosophy of mathematics.Charles Ernest Castonguay - unknown
    Download  
     
    Export citation  
     
    Bookmark   1 citation