Switch to: References

Add citations

You must login to add citations.
  1. Many worlds: decoherent or incoherent?Karim P. Y. Thébault & Richard Dawid - 2015 - Synthese 192 (5):1559-1580.
    We claim that, as it stands, the Deutsch–Wallace–Everett approach to quantum theory is conceptually incoherent. This charge is based upon the approach’s reliance upon decoherence arguments that conflict with its own fundamental precepts regarding probabilistic reasoning in two respects. This conceptual conflict obtains even if the decoherence arguments deployed are aimed merely towards the establishment of certain ‘emergent’ or ‘robust’ structures within the wave function: To be relevant to physical science notions such as robustness must be empirically grounded, and, on (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Quantum aspects of life: Relating evolutionary biology with theology via modern physics.Anna Ijjas - 2013 - Zygon 48 (1):60-76.
    In the present paper, I shall argue that quantum theory can contribute to reconciling evolutionary biology with the creation hypothesis. After giving a careful definition of the theological problem, I will, in a first step, formulate necessary conditions for the compatibility of evolutionary theory and the creation hypothesis. In a second step, I will show how quantum theory can contribute to fulfilling these conditions. More precisely, I claim that (1) quantum probabilities are best understood in terms of ontological indeterminism, but (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Entropy - A Guide for the Perplexed.Roman Frigg & Charlotte Werndl - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford, GB: Oxford University Press. pp. 115-142.
    Entropy is ubiquitous in physics, and it plays important roles in numerous other disciplines ranging from logic and statistics to biology and economics. However, a closer look reveals a complicated picture: entropy is defined differently in different contexts, and even within the same domain different notions of entropy are at work. Some of these are defined in terms of probabilities, others are not. The aim of this chapter is to arrive at an understanding of some of the most important notions (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • The quantum measurement problem: State of play.David Wallace - 2008 - In Dean Rickles (ed.), The Ashgate Companion to Contemporary Philosophy of Physics. Ashgate.
    This is a preliminary version of an article to appear in the forthcoming Ashgate Companion to the New Philosophy of Physics.In it, I aim to review, in a way accessible to foundationally interested physicists as well as physics-informed philosophers, just where we have got to in the quest for a solution to the measurement problem. I don't advocate any particular approach to the measurement problem (not here, at any rate!) but I do focus on the importance of decoherence theory to (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • A simple proof of Born’s rule for statistical interpretation of quantum mechanics.Biswaranjan Dikshit - 2017 - Journal for Foundations and Applications of Physics 4 (1):24-30.
    The Born’s rule to interpret the square of wave function as the probability to get a specific value in measurement has been accepted as a postulate in foundations of quantum mechanics. Although there have been so many attempts at deriving this rule theoretically using different approaches such as frequency operator approach, many-world theory, Bayesian probability and envariance, literature shows that arguments in each of these methods are circular. In view of absence of a convincing theoretical proof, recently some researchers have (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The problem of confirmation in the Everett interpretation.Emily Adlam - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 47:21-32.
    I argue that the Oxford school Everett interpretation is internally incoherent, because we cannot claim that in an Everettian universe the kinds of reasoning we have used to arrive at our beliefs about quantum mechanics would lead us to form true beliefs. I show that in an Everettian context, the experimental evidence that we have available could not provide empirical confirmation for quantum mechanics, and moreover that we would not even be able to establish reference to the theoretical entities of (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • A formal proof of the born rule from decision-theoretic assumptions [aka: How to Prove the Born Rule].David Wallace - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford, GB: Oxford University Press UK.
    I develop the decision-theoretic approach to quantum probability, originally proposed by David Deutsch, into a mathematically rigorous proof of the Born rule in (Everett-interpreted) quantum mechanics. I sketch the argument informally, then prove it formally, and lastly consider a number of proposed ``counter-examples'' to show exactly which premises of the argument they violate. (This is a preliminary version of a chapter to appear --- under the title ``How to prove the Born Rule'' --- in Saunders, Barrett, Kent and Wallace, "Many (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Everett and evidence.Hilary Greaves & Wayne Myrvold - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford, GB: Oxford University Press UK.
    Much of the evidence for quantum mechanics is statistical in nature. The Everett interpretation, if it is to be a candidate for serious consideration, must be capable of doing justice to reasoning on which statistical evidence in which observed relative frequencies that closely match calculated probabilities counts as evidence in favour of a theory from which the probabilities are calculated. Since, on the Everett interpretation, all outcomes with nonzero amplitude are actualized on different branches, it is not obvious that sense (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • The preferred basis problem in the many-worlds interpretation of quantum mechanics: why decoherence does not solve it.Meir Hemmo & Orly Shenker - 2022 - Synthese 200 (3):1-25.
    We start by very briefly describing the measurement problem in quantum mechanics and its solution by the Many Worlds Interpretation. We then describe the preferred basis problem, and the role of decoherence in the MWI. We discuss a number of approaches to the preferred basis problem and argue that contrary to the received wisdom, decoherence by itself does not solve the problem. We address Wallace’s emergentist approach based on what he calls Dennett’s criterion, and we compare the logical structure of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • In defence of the self-location uncertainty account of probability in the many-worlds interpretation.Kelvin J. McQueen & Lev Vaidman - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 66 (C):14-23.
    We defend the many-worlds interpretation of quantum mechanics against the objection that it cannot explain why measurement outcomes are predicted by the Born probability rule. We understand quantum probabilities in terms of an observer's self-location probabilities. We formulate a probability postulate for the MWI: the probability of self-location in a world with a given set of outcomes is the absolute square of that world's amplitude. We provide a proof of this postulate, which assumes the quantum formalism and two principles concerning (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)Many Worlds: an introduction.Simon Saunders - unknown
    This is a self-contained introduction to the Everett interpretation of quantum mechanics. It is the introductory chapter of Many Worlds? Everett, quantum theory, and reality, S. Saunders, J. Barrett, A. Kent, and D. Wallace, Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Against the empirical viability of the Deutsch–Wallace–Everett approach to quantum mechanics.Richard Dawid & Karim P. Y. Thébault - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 47:55-61.
    The subjective Everettian approach to quantum mechanics presented by Deutsch and Wallace fails to constitute an empirically viable theory of quantum phenomena. The decision theoretic implementation of the Born rule realized in this approach provides no basis for rejecting Everettian quantum mechanics in the face of empirical data that contradicts the Born rule. The approach of Greaves and Myrvold, which provides a subjective implementation of the Born rule as well but derives it from empirical data rather than decision theoretic arguments, (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Analysis of Wallace’s Proof of the Born Rule in Everettian Quantum Mechanics: Formal Aspects.André L. G. Mandolesi - 2018 - Foundations of Physics 48 (7):751-782.
    To solve the probability problem of the Many Worlds Interpretation of Quantum Mechanics, D. Wallace has presented a formal proof of the Born rule via decision theory, as proposed by D. Deutsch. The idea is to get subjective probabilities from rational decisions related to quantum measurements, showing the non-probabilistic parts of the quantum formalism, plus some rational constraints, ensure the squared modulus of quantum amplitudes play the role of such probabilities. We provide a new presentation of Wallace’s proof, reorganized to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Analysis of Wallace’s Proof of the Born Rule in Everettian Quantum Mechanics II: Concepts and Axioms.André L. G. Mandolesi - 2019 - Foundations of Physics 49 (1):24-52.
    Having analyzed the formal aspects of Wallace’s proof of the Born rule, we now discuss the concepts and axioms upon which it is built. Justification for most axioms is shown to be problematic, and at times contradictory. Some of the problems are caused by ambiguities in the concepts used. We conclude the axioms are not reasonable enough to be taken as mandates of rationality in Everettian Quantum Mechanics. This invalidates the interpretation of Wallace’s result as meaning it would be rational (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Constructibility of the Universal Wave Function.Arkady Bolotin - 2016 - Foundations of Physics 46 (10):1253-1268.
    This paper focuses on a constructive treatment of the mathematical formalism of quantum theory and a possible role of constructivist philosophy in resolving the foundational problems of quantum mechanics, particularly, the controversy over the meaning of the wave function of the universe. As it is demonstrated in the paper, unless the number of the universe’s degrees of freedom is fundamentally upper bounded or hypercomputation is physically realizable, the universal wave function is a non-constructive entity in the sense of constructive recursive (...)
    Download  
     
    Export citation  
     
    Bookmark