Switch to: References

Add citations

You must login to add citations.
  1. Chains and antichains in partial orderings.Valentina S. Harizanov, Carl G. Jockusch & Julia F. Knight - 2009 - Archive for Mathematical Logic 48 (1):39-53.
    We study the complexity of infinite chains and antichains in computable partial orderings. We show that there is a computable partial ordering which has an infinite chain but none that is ${\Sigma _{1}^{1}}$ or ${\Pi _{1}^{1}}$ , and also obtain the analogous result for antichains. On the other hand, we show that every computable partial ordering which has an infinite chain must have an infinite chain that is the difference of two ${\Pi _{1}^{1}}$ sets. Our main result is that there (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Self-Embeddings of Computable Trees.Stephen Binns, Bjørn Kjos-Hanssen, Manuel Lerman, James H. Schmerl & Reed Solomon - 2008 - Notre Dame Journal of Formal Logic 49 (1):1-37.
    We divide the class of infinite computable trees into three types. For the first and second types, 0' computes a nontrivial self-embedding while for the third type 0'' computes a nontrivial self-embedding. These results are optimal and we obtain partial results concerning the complexity of nontrivial self-embeddings of infinite computable trees considered up to isomorphism. We show that every infinite computable tree must have either an infinite computable chain or an infinite Π01 antichain. This result is optimal and has connections (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Preface.Douglas Cenzer, Valentina Harizanov, David Marker & Carol Wood - 2009 - Archive for Mathematical Logic 48 (1):1-6.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reverse mathematics and the equivalence of definitions for well and better quasi-orders.Peter Cholak, Alberto Marcone & Reed Solomon - 2004 - Journal of Symbolic Logic 69 (3):683-712.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • THE REVERSE MATHEMATICS OF ${\mathsf {CAC\ FOR\ TREES}}$.Julien Cervelle, William Gaudelier & Ludovic Patey - 2024 - Journal of Symbolic Logic 89 (3):1189-1211.
    ${\mathsf {CAC\ for\ trees}}$ is the statement asserting that any infinite subtree of $\mathbb {N}^{<\mathbb {N}}$ has an infinite path or an infinite antichain. In this paper, we study the computational strength of this theorem from a reverse mathematical viewpoint. We prove that ${\mathsf {CAC\ for\ trees}}$ is robust, that is, there exist several characterizations, some of which already appear in the literature, namely, the statement $\mathsf {SHER}$ introduced by Dorais et al. [8], and the statement $\mathsf {TAC}+\mathsf {B}\Sigma ^0_2$ (...)
    Download  
     
    Export citation  
     
    Bookmark