Switch to: References

Add citations

You must login to add citations.
  1. La Mannigfaltigkeitslehre de Husserl.Claire Hill - 2009 - Philosophiques 36 (2):447-465.
    Pour projeter de la lumière dans de nombreux coins et recoins obscurs de la logique pure de Husserl et dans les rapports entre sa logique formelle et sa logique transcendantale, et combler des lacunes empêchant qu’on arrive à une appréciation juste de sa Mannigfaltigkeitslehre, ou théorie de multiplicités, on examine comment, en prônant une théorie des systèmes déductifs, ou systèmes d’axiomes, comme tâche suprême de la logique pure, Husserl cherchait à résoudre certains problèmes épineux auxquels il s’était heurté en écrivant (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Logic and formal ontology.B. Smith - 1989 - In Barry Smith (ed.), Constraints on Correspondence. Hölder/Pichler/Tempsky. pp. 29-67.
    The current resurgence of interest in cognition and in the nature of cognitive processing has brought with it also a renewed interest in the early work of Husserl, which contains one of the most sustained attempts to come to grips with the problems of logic from a cognitive point of view. Logic, for Husserl, is a theory of science; but it is a theory which takes seriously the idea that scientific theories are constituted by the mental acts of cognitive subjects. (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • The Formal Theory of Everything: Explorations of Husserl’s Theory of Manifolds (Mannifaltigkeitslehre).Nikolay Milkov - 2005 - Analecta Husserliana 88:119–35.
    Husserl’s theory of manifolds was developed for the first time in a very short form in the Prolegomena to his Logical Investigations, §§ 69–70 (pp. 248–53), then repeatedly discussed in Ideas I, §§ 71–2 (pp. 148–53), in Formal and Transcendental Logic, §§ 51–4 (pp. 142–54), and finally in the Crisis, § 9 (pp. 20–60). Husserl never lost sight of it: it was his idée fixe. He discussed this theme over forty years, expressing the same, in principle, ideas on it in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Reassessment of Cantorian Abstraction based on the $$\varepsilon $$ ε -operator.Nicola Bonatti - 2022 - Synthese 200 (5):1-26.
    Cantor’s abstractionist account of cardinal numbers has been criticized by Frege as a psychological theory of numbers which leads to contradiction. The aim of the paper is to meet these objections by proposing a reassessment of Cantor’s proposal based upon the set theoretic framework of Bourbaki—called BK—which is a First-order set theory extended with Hilbert’s \-operator. Moreover, it is argued that the BK system and the \-operator provide a faithful reconstruction of Cantor’s insights on cardinal numbers. I will introduce first (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Joys of Disclosure: Simone de Beauvoir and the Phenomenological Tradition.Kristana Arp - 2005 - In Anna-Teresa Tymieniecka (ed.), Logos of Phenomenology and Phenomenology of the Logos. Book One. Dordrecht: Springer. pp. 393-406.
    Download  
     
    Export citation  
     
    Bookmark  
  • L'idée de la logique formelle dans les appendices VI à X du volume 12 des Husserliana.Manuel Gustavo Isaac - 2015 - History and Philosophy of Logic 36 (4):321-345.
    Au terme des Prolégomènes, Husserl formule son idée de la logique pure en la structurant sur deux niveaux: l'un, supérieur, de la logique formelle fondé transcendantalement et d'un point de vue épistémologique par l'autre, inférieur, d'une morphologie des catégories. Seul le second de ces deux niveaux est traité dans les Recherches logiques, tandis que les travaux théoriques en logique formelle menés par Husserl à la même époque en paraissent plutôt indépendants. Cet article est consacré à ces travaux tels que recueillis (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations