Switch to: References

Add citations

You must login to add citations.
  1. Hilbert izlencesinin izinde adcılık adına yeni bulgular.Besim Karakadılar - manuscript
    Hilbert izlencesinin kanıt kuramsal amacı tarihsel gelişimi içinde özetlendikten sonra arka plandaki model-kuramsal motivasyonu belirtilmektedir. Hilbert'in nihai hedefinin matematiğin temellerine ilişkin tüm epistemolojik ve ontolojik varsayımlardan arındırılmış bir matematik kuramı geliştirmek olduğu savunulmaktadır. Yakın geçmişte mantıktaki bazı gelişmelerin Hilbert izlencesinin yalnızca adcı varsayımlar temelinde sürdürülebileceğine ilişkin yeni bir bakış açısı sağladığı öne sürülmektedir.
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbert's Metamathematical Problems and Their Solutions.Besim Karakadilar - 2008 - Dissertation, Boston University
    This dissertation examines several of the problems that Hilbert discovered in the foundations of mathematics, from a metalogical perspective. The problems manifest themselves in four different aspects of Hilbert’s views: (i) Hilbert’s axiomatic approach to the foundations of mathematics; (ii) His response to criticisms of set theory; (iii) His response to intuitionist criticisms of classical mathematics; (iv) Hilbert’s contribution to the specification of the role of logical inference in mathematical reasoning. This dissertation argues that Hilbert’s axiomatic approach was guided primarily (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • El enfoque epistemológico de David Hilbert: el a priori del conocimiento y el papel de la lógica en la fundamentación de la ciencia.Rodrigo Lopez-Orellana - 2019 - Principia: An International Journal of Epistemology 23 (2):279-308.
    This paper explores the main philosophical approaches of David Hilbert’s theory of proof. Specifically, it is focuses on his ideas regarding logic, the concept of proof, the axiomatic, the concept of truth, metamathematics, the a priori knowledge and the general nature of scientific knowledge. The aim is to show and characterize his epistemological approach on the foundation of knowledge, where logic appears as a guarantee of that foundation. Hilbert supposes that the propositional apriorism, proposed by him to support mathematics, sustains (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Informal Logic: A 'Canadian' Approach to Argument.Federico Puppo (ed.) - 2019 - Windsor, Canada: Windsor Studies in Argumentation.
    The informal logic movement began as an attempt to develop – and teach – an alternative logic which can account for the real life arguing that surrounds us in our daily lives – in newspapers and the popular media, political and social commentary, advertising, and interpersonal exchange. The movement was rooted in research and discussion in Canada and especially at the University of Windsor, and has become a branch of argumentation theory which intersects with related traditions and approaches (notably formal (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Existence Assumptions and Logical Principles: Choice Operators in Intuitionistic Logic.Corey Edward Mulvihill - 2015 - Dissertation, University of Waterloo
    Hilbert’s choice operators τ and ε, when added to intuitionistic logic, strengthen it. In the presence of certain extensionality axioms they produce classical logic, while in the presence of weaker decidability conditions for terms they produce various superintuitionistic intermediate logics. In this thesis, I argue that there are important philosophical lessons to be learned from these results. To make the case, I begin with a historical discussion situating the development of Hilbert’s operators in relation to his evolving program in the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Schoenberg, Wittgenstein, and the Vienna circle : epistemological meta-themes in harmonic theory, aesthetics, and logical positivism.James Kenneth Wright - unknown
    This study examines the relativistic aspects of Arnold Schoenberg's harmonic and aesthetic theories in the light of a framework of ideas presented in the early writings of Ludwig Wittgenstein, the logician, philosopher of language, and Schoenberg's contemporary and Austrian compatriot. The author has identified correspondences between the writings of Schoenberg, the early Wittgenstein, and the Vienna Circle of philosophers, on a wide range of topics and themes. Issues discussed include the nature and limits of language, musical universals, theoretical conventionalism, word-to-world (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • From completeness to archimedean completenes.Philip Ehrlich - 1997 - Synthese 110 (1):57-76.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • (1 other version)Weak and Post completeness in the Hilbert school.Víctor Aranda - 2019 - Humanities Journal of Valparaiso 14:449-466.
    The aim of this paper is to clarify why propositional logic is Post complete and its weak completeness was almost unnoticed by Hilbert and Bernays, while first-order logic is Post incomplete and its weak completeness was seen as an open problem by Hilbert and Ackermman. Thus, I will compare propositional and first-order logic in the Prinzipien der Mathematik, Bernays’s second Habilitationsschrift and the Grundzüge der Theoretischen Logik. The so called “arithmetical interpretation”, the conjunctive and disjunctive normal forms and the soundness (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbert between the formal and the informal side of mathematics.Giorgio Venturi - 2015 - Manuscrito 38 (2):5-38.
    : In this article we analyze the key concept of Hilbert's axiomatic method, namely that of axiom. We will find two different concepts: the first one from the period of Hilbert's foundation of geometry and the second one at the time of the development of his proof theory. Both conceptions are linked to two different notions of intuition and show how Hilbert's ideas are far from a purely formalist conception of mathematics. The principal thesis of this article is that one (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Remarks on the development of computability.Stewart Shapiro - 1983 - History and Philosophy of Logic 4 (1-2):203-220.
    The purpose of this article is to examine aspects of the development of the concept and theory of computability through the theory of recursive functions. Following a brief introduction, Section 2 is devoted to the presuppositions of computability. It focuses on certain concepts, beliefs and theorems necessary for a general property of computability to be formulated and developed into a mathematical theory. The following two sections concern situations in which the presuppositions were realized and the theory of computability was developed. (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Platonism and aristotelianism in mathematics.Richard Pettigrew - 2008 - Philosophia Mathematica 16 (3):310-332.
    Philosophers of mathematics agree that the only interpretation of arithmetic that takes that discourse at 'face value' is one on which the expressions 'N', '0', '1', '+', and 'x' are treated as proper names. I argue that the interpretation on which these expressions are treated as akin to free variables has an equal claim to be the default interpretation of arithmetic. I show that no purely syntactic test can distinguish proper names from free variables, and I observe that any semantic (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Pragmatism, intuitionism, and formalism.Henry A. Patin - 1957 - Philosophy of Science 24 (3):243-252.
    “… there is no distinction of meaning so fine as to consist in anything but a possible difference of practice.”“… Consider what effects, that might conceivably have practical bearings, we conceive the object of our conception to have. Then, our conception of these effects is the whole of our conception of the object.”One example which Peirce chose to illustrate his pragmatic maxim as thus stated was the familiar theological distinction between transubstantiation and consubstantiation. Now since these two doctrines agree in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Idealist and Realist Elements in Cantor's Approach to Set Theory.I. Jane - 2010 - Philosophia Mathematica 18 (2):193-226.
    There is an apparent tension between the open-ended aspect of the ordinal sequence and the assumption that the set-theoretical universe is fully determinate. This tension is already present in Cantor, who stressed the incompletable character of the transfinite number sequence in Grundlagen and avowed the definiteness of the totality of sets and numbers in subsequent philosophical publications and in correspondence. The tension is particularly discernible in his late distinction between sets and inconsistent multiplicities. I discuss Cantor’s contrasting views, and I (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Reflections on gödel's and Gandy's reflections on Turing's thesis.David Israel - 2002 - Minds and Machines 12 (2):181-201.
    We sketch the historical and conceptual context of Turing's analysis of algorithmic or mechanical computation. We then discuss two responses to that analysis, by Gödel and by Gandy, both of which raise, though in very different ways. The possibility of computation procedures that cannot be reduced to the basic procedures into which Turing decomposed computation. Along the way, we touch on some of Cleland's views.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)The reformulation of the concept of predicativity according to Poincaré.Vecchio Junior & Jacintho Del - 2013 - Scientiae Studia 11 (2):391-416.
    Este texto introduz a tradução do discurso de intitulado "Sobre os números transfinitos" ("Über transfinite Zahlen"), proferido por Henri Poincaré em 27 de abril de 1909, na Universidade de Göttingen. Após uma breve apresentação do pensamento do autor acerca dos fundamentos da aritmética, procura-se citar os aspectos mais relevantes da chamada crise dos fundamentos da matemática, para então introduzir a reformulação do conceito de predicatividade aventada no referido discurso sobre números transfinitos, contribuição compreendida como um recurso teórico necessário para a (...)
    Download  
     
    Export citation  
     
    Bookmark