Switch to: References

Add citations

You must login to add citations.
  1. Actual and Potential Infinity.Øystein Linnebo & Stewart Shapiro - 2017 - Noûs 53 (1):160-191.
    The notion of potential infinity dominated in mathematical thinking about infinity from Aristotle until Cantor. The coherence and philosophical importance of the notion are defended. Particular attention is paid to the question of whether potential infinity is compatible with classical logic or requires a weaker logic, perhaps intuitionistic.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Cantorian Infinity and Philosophical Concepts of God.Joanna Van der Veen & Leon Horsten - 2013 - European Journal for Philosophy of Religion 5 (3):117--138.
    It is often alleged that Cantor’s views about how the set theoretic universe as a whole should be considered are fundamentally unclear. In this article we argue that Cantor’s views on this subject, at least up until around 1896, are relatively clear, coherent, and interesting. We then go on to argue that Cantor’s views about the set theoretic universe as a whole have implications for theology that have hitherto not been sufficiently recognised. However, the theological implications in question, at least (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The potential hierarchy of sets.Øystein Linnebo - 2013 - Review of Symbolic Logic 6 (2):205-228.
    Some reasons to regard the cumulative hierarchy of sets as potential rather than actual are discussed. Motivated by this, a modal set theory is developed which encapsulates this potentialist conception. The resulting theory is equi-interpretable with Zermelo Fraenkel set theory but sheds new light on the set-theoretic paradoxes and the foundations of set theory.
    Download  
     
    Export citation  
     
    Bookmark   103 citations  
  • Set Theory, Type Theory, and Absolute Generality.Salvatore Florio & Stewart Shapiro - 2014 - Mind 123 (489):157-174.
    In light of the close connection between the ontological hierarchy of set theory and the ideological hierarchy of type theory, Øystein Linnebo and Agustín Rayo have recently offered an argument in favour of the view that the set-theoretic universe is open-ended. In this paper, we argue that, since the connection between the two hierarchies is indeed tight, any philosophical conclusions cut both ways. One should either hold that both the ontological hierarchy and the ideological hierarchy are open-ended, or that neither (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The negative theology of absolute infinity: Cantor, mathematics, and humility.Rico Gutschmidt & Merlin Carl - 2024 - International Journal for Philosophy of Religion 95 (3):233-256.
    Cantor argued that absolute infinity is beyond mathematical comprehension. His arguments imply that the domain of mathematics cannot be grasped by mathematical means. We argue that this inability constitutes a foundational problem. For Cantor, however, the domain of mathematics does not belong to mathematics, but to theology. We thus discuss the theological significance of Cantor’s treatment of absolute infinity and show that it can be interpreted in terms of negative theology. Proceeding from this interpretation, we refer to the recent debate (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Generality Explained.Øystein Linnebo - 2022 - Journal of Philosophy 119 (7):349-379.
    What explains the truth of a universal generalization? Two types of explanation can be distinguished. While an ‘instance-based explanation’ proceeds via some or all instances of the generalization, a ‘generic explanation’ is independent of the instances, relying instead on completely general facts about the properties or operations involved in the generalization. This intuitive distinction is analyzed by means of a truthmaker semantics, which also sheds light on the correct logic of quantification. On the most natural version of the semantics, this (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Fermat’s last theorem proved in Hilbert arithmetic. III. The quantum-information unification of Fermat’s last theorem and Gleason’s theorem.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (12):1-30.
    The previous two parts of the paper demonstrate that the interpretation of Fermat’s last theorem (FLT) in Hilbert arithmetic meant both in a narrow sense and in a wide sense can suggest a proof by induction in Part I and by means of the Kochen - Specker theorem in Part II. The same interpretation can serve also for a proof FLT based on Gleason’s theorem and partly similar to that in Part II. The concept of (probabilistic) measure of a subspace (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Labyrinth of Continua.Patrick Reeder - 2018 - Philosophia Mathematica 26 (1):1-39.
    This is a survey of the concept of continuity. Efforts to explicate continuity have produced a plurality of philosophical conceptions of continuity that have provably distinct expressions within contemporary mathematics. I claim that there is a divide between the conceptions that treat the whole continuum as prior to its parts, and those conceptions that treat the parts of the continuum as prior to the whole. Along this divide, a tension emerges between those conceptions that favor philosophical idealizations of continuity and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Global Reflection Principles.P. D. Welch - 2017 - In I. Niiniluoto, H. Leitgeb, P. Seppälä & E. Sober (eds.), Logic, Methodology and Philosophy of Science - Proceedings of the 15th International Congress, 2015. College Publications.
    Reflection Principles are commonly thought to produce only strong axioms of infinity consistent with V = L. It would be desirable to have some notion of strong reflection to remedy this, and we have proposed Global Reflection Principles based on a somewhat Cantorian view of the universe. Such principles justify the kind of cardinals needed for, inter alia , Woodin’s Ω-Logic.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Cantor, God, and Inconsistent Multiplicities.Aaron R. Thomas-Bolduc - 2016 - Studies in Logic, Grammar and Rhetoric 44 (1):133-146.
    The importance of Georg Cantor’s religious convictions is often neglected in discussions of his mathematics and metaphysics. Herein I argue, pace Jan ́e (1995), that due to the importance of Christianity to Cantor, he would have never thought of absolutely infinite collections/inconsistent multiplicities,as being merely potential, or as being purely mathematical entities. I begin by considering and rejecting two arguments due to Ignacio Jan ́e based on letters to Hilbert and the generating principles for ordinals, respectively, showing that my reading (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Aristotelian Continua.Øystein Linnebo, Stewart Shapiro & Geoffrey Hellman - 2016 - Philosophia Mathematica 24 (2):214-246.
    In previous work, Hellman and Shapiro present a regions-based account of a one-dimensional continuum. This paper produces a more Aristotelian theory, eschewing the existence of points and the use of infinite sets or pluralities. We first show how to modify the original theory. There are a number of theorems that have to be added as axioms. Building on some work by Linnebo, we then show how to take the ‘potential’ nature of the usual operations seriously, by using a modal language, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations