Switch to: References

Citations of:

Aristotelian infinity

Philosophical Review 75 (2):197-218 (1966)

Add citations

You must login to add citations.
  1. 26 Potential Infinity, Paradox, and the Mind of God: Historical Survey.Samuel Levey, Øystein Linnebo & Stewart Shapiro - 2024 - In Mirosław Szatkowski (ed.), Ontology of Divinity. Boston: De Gruyter. pp. 531-560.
    Download  
     
    Export citation  
     
    Bookmark  
  • Competing Roles of Aristotle's Account of the Infinite.Robby Finley - 2024 - Apeiron 57 (1):25-54.
    There are two distinct but interrelated questions concerning Aristotle’s account of infinity that have been the subject of recurring debate. The first of these, what I call here the interpretative question, asks for a charitable and internally coherent interpretation of the limited pieces of text where Aristotle outlines his view of the ‘potential’ (and not ‘actual’) infinite. The second, what I call here the philosophical question, asks whether there is a way to make Aristotle’s notion of the potential infinite coherent (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Aristotle's Actual Infinities.Jacob Rosen - 2021 - Oxford Studies in Ancient Philosophy 59.
    Aristotle is said to have held that any kind of actual infinity is impossible. I argue that he was a finitist (or "potentialist") about _magnitude_, but not about _plurality_. He did not deny that there are, or can be, infinitely many things in actuality. If this is right, then it has implications for Aristotle's views about the metaphysics of parts and points.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Natural Density and the Quantifier “Most”.Selçuk Topal & Ahmet Çevik - 2020 - Journal of Logic, Language and Information 29 (4):511-523.
    This paper proposes a formalization of the class of sentences quantified by most, which is also interpreted as proportion of or majority of depending on the domain of discourse. We consider sentences of the form “Most A are B”, where A and B are plural nouns and the interpretations of A and B are infinite subsets of \. There are two widely used semantics for Most A are B: \ > C \) and \ > \dfrac{C}{2} \), where C denotes (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Recepción de la física de Aristóteles por Tomás de Aquino: Finitud, necesidad, vacío, unicidad del mundo y eternidad del universo.Ana Maria C. Minecan - 2015 - Dissertation, Universidad Complutense de Madrid
    Download  
     
    Export citation  
     
    Bookmark  
  • Kontinuität und Mechanismus. [REVIEW]Philip Beeley - 1997 - The Leibniz Review 7:25-64.
    In my introduction to Kontinuität und Mechanismus, I expressed surprise at the lack of work which was being done at the time on the young Leibniz in spite of the fact that conditions for investigating the period up to 1676 are almost ideal—certainly in Leibnizian terms. Most of the letters and papers from this period of immediate philosophical significance have now been published in the Akademie-Ausgabe so that there is here an incomparably better starting point for detailed studies than in (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Aristotelian finitism.Tamer Nawar - 2015 - Synthese 192 (8):2345-2360.
    It is widely known that Aristotle rules out the existence of actual infinities but allows for potential infinities. However, precisely why Aristotle should deny the existence of actual infinities remains somewhat obscure and has received relatively little attention in the secondary literature. In this paper I investigate the motivations of Aristotle’s finitism and offer a careful examination of some of the arguments considered by Aristotle both in favour of and against the existence of actual infinities. I argue that Aristotle has (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Aristotelian Infinity.John Bowin - 2007 - Oxford Studies in Ancient Philosophy 32:233-250.
    Bowin begins with an apparent paradox about Aristotelian infinity: Aristotle clearly says that infinity exists only potentially and not actually. However, Aristotle appears to say two different things about the nature of that potential existence. On the one hand, he seems to say that the potentiality is like that of a process that might occur but isn't right now. Aristotle uses the Olympics as an example: they might be occurring, but they aren't just now. On the other hand, Aristotle says (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Ontology of Divinity.Mirosław Szatkowski (ed.) - 2024 - Boston: De Gruyter.
    This volume announces a new era in the philosophy of God. Many of its contributions work to create stronger links between the philosophy of God, on the one hand, and mathematics or metamathematics, on the other hand. It is about not only the possibilities of applying mathematics or metamathematics to questions about God, but also the reverse question: Does the philosophy of God have anything to offer mathematics or metamathematics? The remaining contributions tackle stereotypes in the philosophy of religion. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Infinite Regress Arguments as per impossibile Arguments in Aristotle: De Caelo 300a30–b1, Posterior Analytics 72b5–10, Physics V.2 225b33–226a10. [REVIEW]Matthew Duncombe - 2022 - Rhizomata 10 (2):262-282.
    Infinite regress arguments are a powerful tool in Aristotle, but this style of argument has received relatively little attention. Improving our understanding of infinite regress arguments has become pressing since recent scholars have pointed out that it is not clear whether Aristotle’s infinite regress arguments are, in general, effective or indeed what the logical structure of these arguments is. One obvious approach would be to hold that Aristotle takes infinite regress arguments to be per impossibile arguments, which derive an infinite (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Avicenna on Mathematical Infinity.Mohammad Saleh Zarepour - 2020 - Archiv für Geschichte der Philosophie 102 (3):379-425.
    Avicenna believed in mathematical finitism. He argued that magnitudes and sets of ordered numbers and numbered things cannot be actually infinite. In this paper, I discuss his arguments against the actuality of mathematical infinity. A careful analysis of the subtleties of his main argument, i. e., The Mapping Argument, shows that, by employing the notion of correspondence as a tool for comparing the sizes of mathematical infinities, he arrived at a very deep and insightful understanding of the notion of mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What can God Explain?Gerard J. Hughes - 2011 - Royal Institute of Philosophy Supplement 68:51-65.
    In this paper, I shall be arguing for what I hope is a modern version of a very traditional view, which is that God can explain two very basic phenomena: the first is the existence of the universe as we know it: the second is the particular way in which the universe is organised. I shall also, though briefly, try to counter the view that the totally unwelcome features of our universe make it impossible to reconcile the universe as it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Proper classes.Penelope Maddy - 1983 - Journal of Symbolic Logic 48 (1):113-139.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Ph. Soulier, Simplicius et l’infini, préface par Ph. Hoffmann, Paris, Les Belles Lettres, 2014.Marc-Antoine Gavray - 2015 - Revue de Philosophie Ancienne 1:115-128.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Ontology in Aristotle.John Joseph Guiniven - 1975 - Dissertation, University of Massachusetts, Amherst, Hampshire, Mount Holyoke and Smith Colleges
    Download  
     
    Export citation  
     
    Bookmark