Switch to: References

Add citations

You must login to add citations.
  1. Carnap's work in the foundations of logic and mathematics in a historical perspective.Jaakko Hintikka - 1992 - Synthese 93 (1-2):167 - 189.
    Carnap's philosophy is examined from new viewpoints, including three important distinctions: (i) language as calculus vs language as universal medium; (ii) different senses of completeness: (iii) standard vs nonstandard interpretations of (higher-order) logic. (i) Carnap favored in 1930-34 the "formal mode of speech," a corollary to the universality assumption. He later gave it up partially but retained some of its ingredients, e.g., the one-domain assumption. (ii) Carnap's project of creating a universal self-referential language is encouraged by (ii) and by the (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • On Representations of Intended Structures in Foundational Theories.Neil Barton, Moritz Müller & Mihai Prunescu - 2022 - Journal of Philosophical Logic 51 (2):283-296.
    Often philosophers, logicians, and mathematicians employ a notion of intended structure when talking about a branch of mathematics. In addition, we know that there are foundational mathematical theories that can find representatives for the objects of informal mathematics. In this paper, we examine how faithfully foundational theories can represent intended structures, and show that this question is closely linked to the decidability of the theory of the intended structure. We argue that this sheds light on the trade-off between expressive power (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What is categorical structuralism?Geoffrey Hellman - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today. Dordrecht, Netherland: Springer. pp. 151--161.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Axiomatizations of arithmetic and the first-order/second-order divide.Catarina Dutilh Novaes - 2019 - Synthese 196 (7):2583-2597.
    It is often remarked that first-order Peano Arithmetic is non-categorical but deductively well-behaved, while second-order Peano Arithmetic is categorical but deductively ill-behaved. This suggests that, when it comes to axiomatizations of mathematical theories, expressive power and deductive power may be orthogonal, mutually exclusive desiderata. In this paper, I turn to Hintikka’s :69–90, 1989) distinction between descriptive and deductive approaches in the foundations of mathematics to discuss the implications of this observation for the first-order logic versus second-order logic divide. The descriptive (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Pluralist Foundation of the Mathematics of the First Half of the Twentieth Century.Antonino Drago - 2017 - Journal of the Indian Council of Philosophical Research 34 (2):343-363.
    MethodologyA new hypothesis on the basic features characterizing the Foundations of Mathematics is suggested.Application of the methodBy means of it, the several proposals, launched around the year 1900, for discovering the FoM are characterized. It is well known that the historical evolution of these proposals was marked by some notorious failures and conflicts. Particular attention is given to Cantor's programme and its improvements. Its merits and insufficiencies are characterized in the light of the new conception of the FoM. After the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Meaning and inference.Jaroslav Peregrin - 2003 - In Timothy Childers & Ondrej Majer (eds.), Logica Yearbook 2002. Filosofia.
    In this paper we first propose an exact definition of the concept of inferential role, and then go on to examine the question whether subscribing to inferentialism necessitates throwing away existing theories of formal semantics, as we know them from logic, or whether these could be somehow accomodated within the inferentialist framework. The conclusion we reach is that it is possible to make an inferentialist sense of even those common semantic theories which are usually considered as incompatible with inferentialism, such (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The foundations of mathematics from a historical viewpoint.Antonino Drago - 2015 - Epistemologia 38 (1):133-151.
    A new hypothesis on the basic features characterising the Foundations of Mathematics is suggested. By means of them the entire historical development of Mathematics before the 20th Century is summarised through a table. Also the several programs, launched around the year 1900, on the Foundations of Mathematics are characterised by a corresponding table. The major difficulty that these programs met was to recognize an alternative to the basic feature of the deductive organization of a theory - more precisely, to Hilbert’s (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today.Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.) - 2006 - Dordrecht, Netherland: Springer.
    This book explores the interplay between logic and science, describing new trends, new issues and potential research developments.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Louis Joly as a Platonist Painter?Roger Pouivet - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today. Dordrecht, Netherland: Springer. pp. 337--341.
    Download  
     
    Export citation  
     
    Bookmark  
  • EINSTEIN’S 1905 ‘REVOLUTIONARY’ PAPER ON QUANTA AS A MANIFEST AND DETAILED EXAMPLE OF A ‘PRINCIPLE THEORY’.Drago Antonino - 2014 - Advances in Historical Studies (No.3).
    In the last times some scholars tried to characterize Einstein’s distinction between ‘constructive’ – i.e. deductive - theories and ‘principle’ theories, the latter ones being preferred by Einstein. Here this distinction is qualified by an accurate inspection on past physical theories. Some previous theories are surely non-deductive theories. By a mutual comparison of them a set of features - mainly the arguing according to non-classical logic - are extracted. They manifest a new ideal model of organising a theory. Einstein’s paper (...)
    Download  
     
    Export citation  
     
    Bookmark