Switch to: References

Add citations

You must login to add citations.
  1. Physical Computation: How General are Gandy’s Principles for Mechanisms?B. Jack Copeland & Oron Shagrir - 2007 - Minds and Machines 17 (2):217-231.
    What are the limits of physical computation? In his ‘Church’s Thesis and Principles for Mechanisms’, Turing’s student Robin Gandy proved that any machine satisfying four idealised physical ‘principles’ is equivalent to some Turing machine. Gandy’s four principles in effect define a class of computing machines (‘Gandy machines’). Our question is: What is the relationship of this class to the class of all (ideal) physical computing machines? Gandy himself suggests that the relationship is identity. We do not share this view. We (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Hypercomputation.B. Jack Copeland - 2002 - Minds and Machines 12 (4):461-502.
    A survey of the field of hypercomputation, including discussion of a variety of objections.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Do Accelerating Turing Machines Compute the Uncomputable?B. Jack Copeland & Oron Shagrir - 2011 - Minds and Machines 21 (2):221-239.
    Accelerating Turing machines have attracted much attention in the last decade or so. They have been described as “the work-horse of hypercomputation” (Potgieter and Rosinger 2010: 853). But do they really compute beyond the “Turing limit”—e.g., compute the halting function? We argue that the answer depends on what you mean by an accelerating Turing machine, on what you mean by computation, and even on what you mean by a Turing machine. We show first that in the current literature the term (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Beyond the universal Turing machine.B. Jack Copeland & Richard Sylvan - 1999 - Australasian Journal of Philosophy 77 (1):46-66.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Beyond the universal Turing machine.Jack Copeland - 1999 - Australasian Journal of Philosophy 77 (1):46-67.
    We describe an emerging field, that of nonclassical computability and nonclassical computing machinery. According to the nonclassicist, the set of well-defined computations is not exhausted by the computations that can be carried out by a Turing machine. We provide an overview of the field and a philosophical defence of its foundations.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Accelerating Turing machines.B. Jack Copeland - 2002 - Minds and Machines 12 (2):281-300.
    Accelerating Turing machines are Turing machines of a sort able to perform tasks that are commonly regarded as impossible for Turing machines. For example, they can determine whether or not the decimal representation of contains n consecutive 7s, for any n; solve the Turing-machine halting problem; and decide the predicate calculus. Are accelerating Turing machines, then, logically impossible devices? I argue that they are not. There are implications concerning the nature of effective procedures and the theoretical limits of computability. Contrary (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • On the possibility of completing an infinite process.Charles S. Chihara - 1965 - Philosophical Review 74 (1):74-87.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • SAD computers and two versions of the Church–Turing thesis.Tim Button - 2009 - British Journal for the Philosophy of Science 60 (4):765-792.
    Recent work on hypercomputation has raised new objections against the Church–Turing Thesis. In this paper, I focus on the challenge posed by a particular kind of hypercomputer, namely, SAD computers. I first consider deterministic and probabilistic barriers to the physical possibility of SAD computation. These suggest several ways to defend a Physical version of the Church–Turing Thesis. I then argue against Hogarth's analogy between non-Turing computability and non-Euclidean geometry, showing that it is a non-sequitur. I conclude that the Effective version (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • An Infinite Decision Puzzle.Jeffrey Barrett & Frank Arntzenius - 1999 - Theory and Decision 46 (1):101-103.
    We tell a story where an agent who chooses in such a way as to make the greatest possible profit on each of an infinite series of transactions ends up worse off than an agent who chooses in such a way as to make the least possible profit on each transaction. That is, contrary to what one might suppose, it is not necessarily rational always to choose the option that yields the greatest possible profit on each transaction.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • On the Possibility of Supertasks in General Relativity.John Byron Manchak - 2010 - Foundations of Physics 40 (3):276-288.
    Malament-Hogarth spacetimes are the sort of models within general relativity that seem to allow for the possibility of supertasks. There are various ways in which these spacetimes might be considered physically problematic. Here, we examine these criticisms and investigate the prospect of escaping them.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A quantum-information-theoretic complement to a general-relativistic implementation of a beyond-Turing computer.Christian Wüthrich - 2015 - Synthese 192 (7):1989-2008.
    There exists a growing literature on the so-called physical Church-Turing thesis in a relativistic spacetime setting. The physical Church-Turing thesis is the conjecture that no computing device that is physically realizable can exceed the computational barriers of a Turing machine. By suggesting a concrete implementation of a beyond-Turing computer in a spacetime setting, Istvan Nemeti and Gyula David have shown how an appreciation of the physical Church-Turing thesis necessitates the confluence of mathematical, computational, physical, and indeed cosmological ideas. In this (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The extent of computation in malament–hogarth spacetimes.P. D. Welch - 2008 - British Journal for the Philosophy of Science 59 (4):659-674.
    We analyse the extent of possible computations following Hogarth ([2004]) conducted in Malament–Hogarth (MH) spacetimes, and Etesi and Németi ([2002]) in the special subclass containing rotating Kerr black holes. Hogarth ([1994]) had shown that any arithmetic statement could be resolved in a suitable MH spacetime. Etesi and Németi ([2002]) had shown that some relations on natural numbers that are neither universal nor co-universal, can be decided in Kerr spacetimes, and had asked specifically as to the extent of computational limits there. (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Computation and hypercomputation.Mike Stannett - 2003 - Minds and Machines 13 (1):115-153.
    Does Nature permit the implementation of behaviours that cannot be simulated computationally? We consider the meaning of physical computation in some detail, and present arguments in favour of physical hypercomputation: for example, modern scientific method does not allow the specification of any experiment capable of refuting hypercomputation. We consider the implications of relativistic algorithms capable of solving the (Turing) Halting Problem. We also reject as a fallacy the argument that hypercomputation has no relevance because non-computable values are indistinguishable from sufficiently (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Why we view the brain as a computer.Oron Shagrir - 2006 - Synthese 153 (3):393-416.
    The view that the brain is a sort of computer has functioned as a theoretical guideline both in cognitive science and, more recently, in neuroscience. But since we can view every physical system as a computer, it has been less than clear what this view amounts to. By considering in some detail a seminal study in computational neuroscience, I first suggest that neuroscientists invoke the computational outlook to explain regularities that are formulated in terms of the information content of electrical (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Physical hypercomputation and the church–turing thesis.Oron Shagrir & Itamar Pitowsky - 2003 - Minds and Machines 13 (1):87-101.
    We describe a possible physical device that computes a function that cannot be computed by a Turing machine. The device is physical in the sense that it is compatible with General Relativity. We discuss some objections, focusing on those which deny that the device is either a computer or computes a function that is not Turing computable. Finally, we argue that the existence of the device does not refute the Church–Turing thesis, but nevertheless may be a counterexample to Gandy's thesis.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • What is a Computer? A Survey.William J. Rapaport - 2018 - Minds and Machines 28 (3):385-426.
    A critical survey of some attempts to define ‘computer’, beginning with some informal ones, then critically evaluating those of three philosophers, and concluding with an examination of whether the brain and the universe are computers.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Malament–Hogarth Machines.J. B. Manchak - 2020 - British Journal for the Philosophy of Science 71 (3):1143-1153.
    This article shows a clear sense in which general relativity allows for a type of ‘machine’ that can bring about a spacetime structure suitable for the implementation of ‘supertasks’. 1Introduction2Preliminaries3Malament–Hogarth Spacetimes4Machines5Malament–Hogarth Machines6Conclusion.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Deciding arithmetic using SAD computers.Mark Hogarth - 2004 - British Journal for the Philosophy of Science 55 (4):681-691.
    Presented here is a new result concerning the computational power of so-called SADn computers, a class of Turing-machine-based computers that can perform some non-Turing computable feats by utilising the geometry of a particular kind of general relativistic spacetime. It is shown that SADn can decide n-quantifier arithmetic but not (n+1)-quantifier arithmetic, a result that reveals how neatly the SADn family maps into the Kleene arithmetical hierarchy. Introduction Axiomatising computers The power of SAD computers Remarks regarding the concept of computability.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Infinite time Turing machines.Joel David Hamkins - 2002 - Minds and Machines 12 (4):567-604.
    Infinite time Turing machines extend the operation of ordinary Turing machines into transfinite ordinal time. By doing so, they provide a natural model of infinitary computability, a theoretical setting for the analysis of the power and limitations of supertask algorithms.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • How device-independent approaches change the meaning of physical theory.Alexei Grinbaum - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 58:22-30.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • ¿Existen las Máquinas Aceleradas de Turing? Paradojas y posibilidades lógicas.Jose Alejandro Fernández Cuesta - 2023 - Techno Review. International Technology, Science and Society Review 13 (1):49.74.
    Las máquinas aceleradas de Turing (ATMs) son dispositivos capaces de ejecutar súper-tareas. Sin embargo, el simple ejercicio de definirlas ha generado varias paradojas. En el presente artículo se definirán las nociones de súper-tarea y ATM de manera exhaustiva y se aclarará qué debe entenderse en un contexto lógico-formal cuando se pregunta por la existencia de un objeto. A partir de la distinción entre posibilidades lógicas y físicas se disolverán las paradojas y se concluirá que las ATMs son posibles y existen (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Supertasks.Jon Pérez Laraudogoitia - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Eternity and time in science: what role do theories of relativity play in the formation of a coherent model of eternity.F. Lawson - 2013 - Dissertation, University of London
    Historically models of eternity have been grounded in divine attributes rather than the intrinsic structure of space-time. I examine the topology of Minkowski spacetime in comparison to the Euclidean space of Newtonian Mechanics, before highlighting five common approaches to eternity. Both atemporal and temporal models of eternity are examined to establish what they tell us about the nature of eternity outside the divine attributes, before being evaluated for their coherence with the Special Theory of Relativity. I argue that the most (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Discrete transfinite computation models.Philip D. Welch - 2011 - In S. B. Cooper & Andrea Sorbi (eds.), Computability in Context: Computation and Logic in the Real World. World Scientific. pp. 375--414.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Cosmic Skepticism and the Beginning of Physical Reality (Doctoral Dissertation).Linford Dan - 2022 - Dissertation, Purdue University
    This dissertation is concerned with two of the largest questions that we can ask about the nature of physical reality: first, whether physical reality begin to exist and, second, what criteria would physical reality have to fulfill in order to have had a beginning? Philosophers of religion and theologians have previously addressed whether physical reality began to exist in the context of defending the Kal{\'a}m Cosmological Argument (KCA) for theism, that is, (P1) everything that begins to exist has a cause (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The aleph zero or zero dichotomy.Antonio Leon - 2006
    The Aleph Zero or Zero Dichotomy is a strong version of Zeno's Dichotomy II which being entirely derived from the topological successiveness of the w-order comes to the same Zeno's absurdity.
    Download  
     
    Export citation  
     
    Bookmark  
  • The modal argument for hypercomputing minds.Selmer Bringsjord - 2004 - Theoretical Computer Science 317.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Existence of faster than light signals implies hypercomputation already in special relativity.Péter Németi & Gergely Székely - 2012 - In S. Barry Cooper (ed.), How the World Computes. pp. 528--538.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On bifurcated supertasks and related questions.Antonio Leon - unknown
    Bifurcated supertasks entail the actual infinite division of time (accelerated system of reference) as well as the existence of half-curves of infinite length (supertask system of reference). This paper analyzes both issues from a critique perspective. It also analyzes a conflictive case of hypercomputation performed by means of a bifurcated supertask. The results of these analyzes suggest the convenience of reviewing certain foundational aspects of infinitist theories.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum gravity computers: On the theory of computation with indefinite causal structure.Lucien Hardy - 2009 - In Wayne C. Myrvold & Joy Christian (eds.), Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle. Springer. pp. 379--401.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Criticism of Benacerraf's criticism of modern eleatics.Antonio Leon - unknown
    I analyze here Benacerraf's criticism of Thomson arguments on the impossibility of w-supertasks. Although Benacerraf's criticism is well founded, his analysis of Thomson's lamp is incomplete. In fact, it is possible to consider a new line of argument, which Benacerraf only incidentally considered, based on the functioning laws of the lamp. This argument leads to a contradictory result that compromises the formal consistency of the w-ordering involved in all w-supertasks.
    Download  
     
    Export citation  
     
    Bookmark