Switch to: References

Add citations

You must login to add citations.
  1. Local reduction in physics.Joshua Rosaler - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 50 (C):54-69.
    A conventional wisdom about the progress of physics holds that successive theories wholly encompass the domains of their predecessors through a process that is often called reduction. While certain influential accounts of inter-theory reduction in physics take reduction to require a single "global" derivation of one theory's laws from those of another, I show that global reductions are not available in all cases where the conventional wisdom requires reduction to hold. However, I argue that a weaker "local" form of reduction, (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • A Connection between Minkowski and Galilean Space‐times in Quantum Mechanics.Douglas Kutach - 2010 - International Studies in the Philosophy of Science 24 (1):15 – 29.
    Relativistic quantum theories are equipped with a background Minkowski spacetime and non-relativistic quantum theories with a Galilean space-time. Traditional investigations have distinguished their distinct space-time structures and have examined ways in which relativistic theories become sufficiently like Galilean theories in a low velocity approximation or limit. A different way to look at their relationship is to see that both kinds of theories are special cases of a certain five-dimensional generalization involving no limiting procedures or approximations. When one compares them, striking (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Escaping the Fundamental Dichotomy of Scientific Realism.Shahin Kaveh - 2023 - British Journal for the Philosophy of Science 74 (4):999-1025.
    The central motivation behind the scientific realism debate is explaining the impressive success of scientific theories. The debate has been dominated by two rival types of explanations: the first relies on some sort of static, referentially transparent relationship between the theory and the unobservable world, such as truthlikeness, representation, or structural similarity; the second relies on no robust relationship between the theory and unobservable reality at all, and instead draws on predictive similarity and the stringent methodology of science to explain (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Stationary Dirac Equation as a Generalized Pauli Equation for Two Quasiparticles.Nikolay L. Chuprikov - 2015 - Foundations of Physics 45 (6):644-656.
    By analyzing the Dirac equation with static electric and magnetic fields it is shown that Dirac’s theory is nothing but a generalized one-particle quantum theory compatible with the special theory of relativity. This equation describes a quantum dynamics of a single relativistic fermion, and its solution is reduced to solution of the generalized Pauli equation for two quasiparticles which move in the Euclidean space with their effective masses holding information about the Lorentzian symmetry of the four-dimensional space-time. We reveal the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation