Switch to: References

Add citations

You must login to add citations.
  1. A Middle Way: A Non-Fundamental Approach to Many-Body Physics by Robert Batterman: Autonomy and Varieties of Reduction. [REVIEW]Alexander Franklin & Katie Robertson - 2022 - Studies in History and Philosophy of Science 97:1223-125.
    Download  
     
    Export citation  
     
    Bookmark  
  • Book Forum.Alexander Franklin & Katie Robertson - 2023 - Studies in History and Philosophy of Science Part A 97 (C):123-125.
    Download  
     
    Export citation  
     
    Bookmark  
  • Two Forms of Functional Reductionism in Physics.Lorenzo Lorenzetti - 2024 - Synthese 203 (2).
    Functional reductionism characterises inter-theoretic reduction as the recovery of the upper-level behaviour described by the reduced theory in terms of the lower-level reducing theory. For instance, finding a statistical mechanical realiser that plays the functional role of thermodynamic entropy allows for establishing a reductive link between thermodynamics and statistical mechanics. This view constitutes a unique approach to reduction that enjoys a number of positive features, but has received limited attention in the philosophy of science. -/- This paper aims to clarify (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Theoretical Relicts: Progress, Reduction, and Autonomy.Katie Robertson & Alastair Wilson - forthcoming - British Journal for the Philosophy of Science.
    When once-successful physical theories are abandoned, common wisdom has it that their characteristic theoretical entities are abandoned with them: examples include phlogiston, light rays, Newtonian forces, Euclidean space. But sometimes a theory sees ongoing use, despite being superseded. What should scientific realists say about the characteristic entities of the theories in such cases? The standard answer is that these ‘theoretical relicts’ are merely useful fictions. In this paper we offer a different answer. We start by distinguishing horizontal reduction (in which (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Reduction as an a posteriori Relation.Joshua Rosaler - 2019 - British Journal for the Philosophy of Science 70 (1):269-299.
    Reduction between theories in physics is often approached as an a priori relation in the sense that reduction is often taken to depend only on a comparison of the mathematical structures of two theories. I argue that such approaches fail to capture one crucial sense of “reduction,” whereby one theory encompasses the set of real behaviors that are well-modeled by the other. Reduction in this sense depends not only on the mathematical structures of the theories, but also on empirical facts (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Interpretation neutrality in the classical domain of quantum theory.Joshua Rosaler - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:54-72.
    I show explicitly how concerns about wave function collapse and ontology can be decoupled from the bulk of technical analysis necessary to recover localized, approximately Newtonian trajectories from quantum theory. In doing so, I demonstrate that the account of classical behavior provided by decoherence theory can be straightforwardly tailored to give accounts of classical behavior on multiple interpretations of quantum theory, including the Everett, de Broglie-Bohm and GRW interpretations. I further show that this interpretation-neutral, decoherence-based account conforms to a general (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • “Formal” Versus “Empirical” Approaches to Quantum–Classical Reduction.Joshua Rosaler - 2015 - Topoi 34 (2):325-338.
    I distinguish two types of reduction within the context of quantum-classical relations, which I designate “formal” and “empirical”. Formal reduction holds or fails to hold solely by virtue of the mathematical relationship between two theories; it is therefore a two-place, a priori relation between theories. Empirical reduction requires one theory to encompass the range of physical behaviors that are well-modeled in another theory; in a certain sense, it is a three-place, a posteriori relation connecting the theories and the domain of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Book Forum.Patricia Palacios - forthcoming - Studies in History and Philosophy of Science Part A.
    Download  
     
    Export citation  
     
    Bookmark  
  • くりこみ群におけるミニマルモデルに基づく局所的創発.Kohei Morita - 2022 - Kagaku Tetsugaku 55 (1):1-23.
    Download  
     
    Export citation  
     
    Bookmark  
  • Physical Theories are Prescriptions, not Descriptions.Shahin Kaveh - 2023 - Erkenntnis 88 (5):1825-1853.
    Virtually all philosophers of science have construed fundamental theories as descriptions of entities, properties, and/or structures. Call this the “descriptive-ontological” view. I argue that this view is incorrect, at least insofar as physical theories are concerned. I propose a novel construal of theories that I call the “prescriptive-dynamical” view. The central tenet of this view, roughly put, is that the _essential_ content of fundamental physical theories is a _prescription for interfacing with natural systems and translating local data into compact theoretical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Escaping the Fundamental Dichotomy of Scientific Realism.Shahin Kaveh - 2023 - British Journal for the Philosophy of Science 74 (4):999-1025.
    The central motivation behind the scientific realism debate is explaining the impressive success of scientific theories. The debate has been dominated by two rival types of explanations: the first relies on some sort of static, referentially transparent relationship between the theory and the unobservable world, such as truthlikeness, representation, or structural similarity; the second relies on no robust relationship between the theory and unobservable reality at all, and instead draws on predictive similarity and the stringent methodology of science to explain (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Classical Limit as an Approximation.Benjamin H. Feintzeig - 2020 - Philosophy of Science 87 (4):612-639.
    I argue that it is possible to give an interpretation of the classical ℏ→0 limit of quantum mechanics that results in a partial explanation of the success of classical mechanics. The interpretation...
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Reductive Explanation and the Construction of Quantum Theories.Benjamin H. Feintzeig - 2022 - British Journal for the Philosophy of Science 73 (2):457-486.
    I argue that philosophical issues concerning reductive explanations help constrain the construction of quantum theories with appropriate state spaces. I illustrate this general proposal with two examples of restricting attention to physical states in quantum theories: regular states and symmetry-invariant states. 1Introduction2Background2.1 Physical states2.2 Reductive explanations3The Proposed ‘Correspondence Principle’4Example: Regularity5Example: Symmetry-Invariance6Conclusion: Heuristics and Discovery.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Deduction and definability in infinite statistical systems.Benjamin H. Feintzeig - 2017 - Synthese 196 (5):1-31.
    Classical accounts of intertheoretic reduction involve two pieces: first, the new terms of the higher-level theory must be definable from the terms of the lower-level theory, and second, the claims of the higher-level theory must be deducible from the lower-level theory along with these definitions. The status of each of these pieces becomes controversial when the alleged reduction involves an infinite limit, as in statistical mechanics. Can one define features of or deduce the behavior of an infinite idealized system from (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • L'empirisme modal.Quentin Ruyant - 2017 - Dissertation, Université Rennes 1
    The aim of this thesis dissertation is to propose a novel position in the debate on scientific realism, modal empiricism, and to show its fruitfulness when it comes to interpreting the cognitive content of scientific theories. Modal empiricism is an empiricist position, according to which the aim of science is to produce empirically adequate theories rather than true theories. However, it suggests adopting a broader comprehension of experience than traditional versions of empiricism, through a commitment to natural modalities. Following modal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Status of Scaling Limits as Approximations in Quantum Theories.Benjamin Feintzeig - unknown
    This paper attempts to make sense of a notion of ``approximation on certain scales'' in physical theories. I use this notion to understand the classical limit of ordinary quantum mechanics as a kind of scaling limit, showing that the mathematical tools of strict quantization allow one to make the notion of approximation precise. I then compare this example with the scaling limits involved in renormalization procedures for effective field theories. I argue that one does not yet have the mathematical tools (...)
    Download  
     
    Export citation  
     
    Bookmark