Switch to: References

Add citations

You must login to add citations.
  1. Empiricism, Probability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Journal of Applied Logic 12 (3):319–348.
    The topic of this paper is our knowledge of the natural numbers, and in particular, our knowledge of the basic axioms for the natural numbers, namely the Peano axioms. The thesis defended in this paper is that knowledge of these axioms may be gained by recourse to judgements of probability. While considerations of probability have come to the forefront in recent epistemology, it seems safe to say that the thesis defended here is heterodox from the vantage point of traditional philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logicism, Interpretability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Review of Symbolic Logic 7 (1):84-119.
    A crucial part of the contemporary interest in logicism in the philosophy of mathematics resides in its idea that arithmetical knowledge may be based on logical knowledge. Here an implementation of this idea is considered that holds that knowledge of arithmetical principles may be based on two things: (i) knowledge of logical principles and (ii) knowledge that the arithmetical principles are representable in the logical principles. The notions of representation considered here are related to theory-based and structure-based notions of representation (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Quantifier Variance without Collapse.Hans Halvorson - manuscript
    The thesis of quantifier variance is consistent and cannot be refuted via a collapse argument.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Functoriality of the Schmidt construction.Juan Climent Vidal & Enric Cosme Llópez - 2023 - Logic Journal of the IGPL 31 (5):822-893.
    After proving, in a purely categorial way, that the inclusion functor $\textrm {In}_{\textbf {Alg}(\varSigma )}$ from $\textbf {Alg}(\varSigma )$, the category of many-sorted $\varSigma $-algebras, to $\textbf {PAlg}(\varSigma )$, the category of many-sorted partial $\varSigma $-algebras, has a left adjoint $\textbf {F}_{\varSigma }$, the (absolutely) free completion functor, we recall, in connection with the functor $\textbf {F}_{\varSigma }$, the generalized recursion theorem of Schmidt, which we will also call the Schmidt construction. Next, we define a category $\textbf {Cmpl}(\varSigma )$, of (...)
    Download  
     
    Export citation  
     
    Bookmark