Switch to: References

Add citations

You must login to add citations.
  1. Pathology of submeasures and $$F_{\sigma }$$ ideals.Jorge Martínez, David Meza-Alcántara & Carlos Uzcátegui - 2024 - Archive for Mathematical Logic 63 (7):941-967.
    We address some phenomena about the interaction between lower semicontinuous submeasures on $${\mathbb {N}}$$ N and $$F_{\sigma }$$ F σ ideals. We analyze the pathology degree of a submeasure and present a method to construct pathological $$F_{\sigma }$$ F σ ideals. We give a partial answers to the question of whether every nonpathological tall $$F_{\sigma }$$ F σ ideal is Katětov above the random ideal or at least has a Borel selector. Finally, we show a representation of nonpathological $$F_{\sigma }$$ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Katětov order between Hindman, Ramsey and summable ideals.Rafał Filipów, Krzysztof Kowitz & Adam Kwela - 2024 - Archive for Mathematical Logic 63 (7):859-876.
    A family $$\mathcal {I}$$ I of subsets of a set X is an ideal on X if it is closed under taking subsets and finite unions of its elements. An ideal $$\mathcal {I}$$ I on X is below an ideal $$\mathcal {J}$$ J on Y in the Katětov order if there is a function $$f{: }Y\rightarrow X$$ f : Y → X such that $$f^{-1}[A]\in \mathcal {J}$$ f - 1 [ A ] ∈ J for every $$A\in \mathcal {I}$$ A (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Katětov order on Borel ideals.Michael Hrušák - 2017 - Archive for Mathematical Logic 56 (7-8):831-847.
    We study the Katětov order on Borel ideals. We prove two structural theorems, one for Borel ideals, the other for analytic P-ideals. We isolate nine important Borel ideals and study the Katětov order among them. We also present a list of fundamental open problems concerning the Katětov order on Borel ideals.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Forcing with copies of the Rado and Henson graphs.Osvaldo Guzmán & Stevo Todorcevic - 2023 - Annals of Pure and Applied Logic 174 (8):103286.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Katětov Order on Mad Families.Osvaldo Guzmán - 2024 - Journal of Symbolic Logic 89 (2):794-828.
    We continue with the study of the Katětov order on MAD families. We prove that Katětov maximal MAD families exist under $\mathfrak {b=c}$ and that there are no Katětov-top MAD families assuming $\mathfrak {s\leq b}.$ This improves previously known results from the literature. We also answer a problem form Arciga, Hrušák, and Martínez regarding Katětov maximal MAD families.
    Download  
     
    Export citation  
     
    Bookmark  
  • Bases and borel selectors for tall families.Jan Grebík & Carlos Uzcátegui - 2019 - Journal of Symbolic Logic 84 (1):359-375.
    Given a family${\cal C}$of infinite subsets of${\Bbb N}$, we study when there is a Borel function$S:2^{\Bbb N} \to 2^{\Bbb N} $such that for every infinite$x \in 2^{\Bbb N} $,$S\left \in {\Cal C}$and$S\left \subseteq x$. We show that the family of homogeneous sets as given by the Nash-Williams’ theorem admits such a Borel selector. However, we also show that the analogous result for Galvin’s lemma is not true by proving that there is an$F_\sigma $tall ideal on${\Bbb N}$without a Borel selector. The (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Characterizing existence of certain ultrafilters.Rafał Filipów, Krzysztof Kowitz & Adam Kwela - 2022 - Annals of Pure and Applied Logic 173 (9):103157.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ways of Destruction.Barnabás Farkas & Lyubomyr Zdomskyy - 2022 - Journal of Symbolic Logic 87 (3):938-966.
    We study the following natural strong variant of destroying Borel ideals: $\mathbb {P}$ $+$ -destroys $\mathcal {I}$ if $\mathbb {P}$ adds an $\mathcal {I}$ -positive set which has finite intersection with every $A\in \mathcal {I}\cap V$. Also, we discuss the associated variants $$ \begin{align*} \mathrm{non}^*(\mathcal{I},+)=&\min\big\{|\mathcal{Y}|:\mathcal{Y}\subseteq\mathcal{I}^+,\; \forall\;A\in\mathcal{I}\;\exists\;Y\in\mathcal{Y}\;|A\cap Y| \omega $ ; (4) we characterise when the Laver–Prikry, $\mathbb {L}(\mathcal {I}^*)$ -generic real $+$ -destroys $\mathcal {I}$, and in the case of P-ideals, when exactly $\mathbb {L}(\mathcal {I}^*)$ $+$ -destroys $\mathcal {I}$ ; (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the structure of Borel ideals in-between the ideals ED and Fin ⊗ Fin in the Katětov order.Pratulananda Das, Rafał Filipów, Szymon Gła̧b & Jacek Tryba - 2021 - Annals of Pure and Applied Logic 172 (8):102976.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • HL ideals and Sacks indestructible ultrafilters.David Chodounský, Osvaldo Guzmán & Michael Hrušák - 2024 - Annals of Pure and Applied Logic 175 (1):103326.
    Download  
     
    Export citation  
     
    Bookmark