Switch to: References

Add citations

You must login to add citations.
  1. Inherent Properties and Statistics with Individual Particles in Quantum Mechanics.Matteo Morganti - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (3):223-231.
    This paper puts forward the hypothesis that the distinctive features of quantum statistics are exclusively determined by the nature of the properties it describes. In particular, all statistically relevant properties of identical quantum particles in many-particle systems are conjectured to be irreducible, ‘inherent’ properties only belonging to the whole system. This allows one to explain quantum statistics without endorsing the ‘Received View’ that particles are non-individuals, or postulating that quantum systems obey peculiar probability distributions, or assuming that there are primitive (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Identity, Superselection Theory, and the Statistical Properties of Quantum Fields.David John Baker - 2013 - Philosophy of Science 80 (2):262-285.
    The permutation symmetry of quantum mechanics is widely thought to imply a sort of metaphysical underdetermination about the identity of particles. Despite claims to the contrary, this implication does not hold in the more fundamental quantum field theory, where an ontology of particles is not generally available. Although permutations are often defined as acting on particles, a more general account of permutation symmetry can be formulated using superselection theory. As a result, permutation symmetry applies even in field theories with no (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Weak Discernibility for Quanta, the Right Way.Nick Huggett & Josh Norton - 2014 - British Journal for the Philosophy of Science 65 (1):39-58.
    Muller and Saunders ([2008]) purport to demonstrate that, surprisingly, bosons and fermions are discernible; this article disputes their arguments, then derives a similar conclusion in a more satisfactory fashion. After briefly explicating their proof and indicating how it escapes earlier indiscernibility results, we note that the observables which Muller and Saunders argue discern particles are (i) non-symmetric in the case of bosons and (ii) trivial multiples of the identity in the case of fermions. Both problems undermine the claim that they (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Identity and individuality in quantum theory.Steven French - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • On the significance of permutation symmetry.Nick Huggett - 1999 - British Journal for the Philosophy of Science 50 (3):325-347.
    There has been considerable recent philosophical debate over the implications of many particle quantum mechanics for the metaphysics of individuality (cf. Huggett [1997]). In this paper I look at things from a rather different perspective: by investigating the significance of permutation symmetry. I consider how various philosophical positions link up to the physical postulate of the indistinguishability of permuted states-permutation invariance-and how this postulate is used to explain quantum statistics. I offer an explanation of the statistics that relies on the (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Rethinking Individuality in Quantum Mechanics.Nathan Moore - 2019 - Dissertation, University of Western Ontario
    One recent debate in philosophy of physics has centered whether quantum particles are individuals or not. The received view is that particles are not individuals and the standard methodology is to approach the question via the structure of quantum theory. I challenge both the received view and the standard methodology. I contend not only that the structure of quantum theory is not the right place to look for conditions of individuality that quantum particles may or may not satisfy, but also (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Individual particles, properties and quantum statistics.Matteo Morganti - 2009 - In Mauricio Suárez, Mauro Dorato & Miklós Rédei (eds.), EPSA Philosophical Issues in the Sciences · Launch of the European Philosophy of Science Association. Dordrecht, Netherland: Springer. pp. 175--185.
    Although there have been several attempts to resist this conclusion, it is commonly held that the peculiar statistical behaviour of quantum particles is due to their non-individuality. In this paper, a new suggestion is put forward: quantum particles are individuals, and the distinctive features of quantum statistics are determined by the fact that all the state-dependent properties described by quantum statistics are emergent relations.
    Download  
     
    Export citation  
     
    Bookmark  
  • “Let the Occult Quality Go”: Interpreting Berkley's Metaphysics of Science.Tom Stoneham & Angelo Cei - 2009 - European Journal of Analytic Philosophy 5 (1):73 - 91.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Symmetry & possibility: To reduce or not reduce?Dean Rickles - unknown
    In this paper I examine the connection between symmetry and modality from the perspective of `reduction' methods in geometric mechanics. I begin by setting the problem up as a choice between two opposing views: reduction and non-reduction. I then discern four views on the matter in the literature; they are distinguished by their advocation of distinct geometric spaces as representing `reality'. I come down in favour of non-reductive methods.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Quantum vagueness.Steven French & Décio Krause - 2003 - Erkenntnis 59 (1):97 - 124.
    It has been suggested that quantum particles are genuinelyvague objects (Lowe 1994a). The present work explores thissuggestion in terms of the various metaphysical packages that areavailable for describing such particles. The formal frameworksunderpinning such packages are outlined and issues of identityand reference are considered from this overall perspective. Indoing so we hope to illuminate the diverse ways in whichvagueness can arise in the quantum context.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Particles, objects, and physics.Justin Pniower - unknown
    This thesis analyses the ontological nature of quantum particles. In it I argue that quantum particles, despite their indistinguishability, are objects in much the same way as classical particles. This similarity provides an important point of continuity between classical and quantum physics. I consider two notions of indistinguishability, that of indiscernibility and permutation symmetry. I argue that neither sort of indistinguishability undermines the identity of quantum particles. I further argue that, when we understand in distinguishability in terms of permutation symmetry, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations