Switch to: References

Citations of:

Conceptions of Set and the Foundations of Mathematics

Cambridge University Press (2020)

Add citations

You must login to add citations.
  1. A Taxonomy for Set-Theoretic Potentialism.Davide Sutto - 2024 - Philosophia Mathematica:1-28.
    Set-theoretic potentialism is one of the most lively trends in the philosophy of mathematics. Modal accounts of sets have been developed in two different ways. The first, initiated by Charles Parsons, focuses on sets as objects. The second, dating back to Hilary Putnam and Geoffrey Hellman, investigates set-theoretic structures. The paper identifies two strands of open issues, technical and conceptual, to clarify these two different, yet often conflated, views and categorize the potentialist approaches that have emerged in the contemporary debate. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Paraconsistent logic.Graham Priest - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   182 citations  
  • Wand/Set Theories: A realization of Conway's mathematicians' liberation movement, with an application to Church's set theory with a universal set.Tim Button - forthcoming - Journal of Symbolic Logic.
    Consider a variant of the usual story about the iterative conception of sets. As usual, at every stage, you find all the (bland) sets of objects which you found earlier. But you also find the result of tapping any earlier-found object with any magic wand (from a given stock of magic wands). -/- By varying the number and behaviour of the wands, we can flesh out this idea in many different ways. This paper's main Theorem is that any loosely constructive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • How to Adopt a Logic.Daniel Cohnitz & Carlo Nicolai - forthcoming - Dialectica.
    What is commonly referred to as the Adoption Problem is a challenge to the idea that the principles of logic can be rationally revised. The argument is based on a reconstruction of unpublished work by Saul Kripke. As the reconstruction has it, Kripke extends the scope of Willard van Orman Quine's regress argument against conventionalism to the possibility of adopting new logical principles. In this paper we want to discuss the scope of this challenge. Are all revisions of logic subject (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • In defense of Countabilism.David Builes & Jessica M. Wilson - 2022 - Philosophical Studies 179 (7):2199-2236.
    Inspired by Cantor's Theorem (CT), orthodoxy takes infinities to come in different sizes. The orthodox view has had enormous influence in mathematics, philosophy, and science. We will defend the contrary view---Countablism---according to which, necessarily, every infinite collection (set or plurality) is countable. We first argue that the potentialist or modal strategy for treating Russell's Paradox, first proposed by Parsons (2000) and developed by Linnebo (2010, 2013) and Linnebo and Shapiro (2019), should also be applied to CT, in a way that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Against Cumulative Type Theory.Tim Button & Robert Trueman - 2022 - Review of Symbolic Logic 15 (4):907-49.
    Standard Type Theory, STT, tells us that b^n(a^m) is well-formed iff n=m+1. However, Linnebo and Rayo have advocated the use of Cumulative Type Theory, CTT, has more relaxed type-restrictions: according to CTT, b^β(a^α) is well-formed iff β > α. In this paper, we set ourselves against CTT. We begin our case by arguing against Linnebo and Rayo’s claim that CTT sheds new philosophical light on set theory. We then argue that, while CTT ’s type-restrictions are unjustifiable, the type-restrictions imposed by (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Gaps, Gluts, and Theoretical Equivalence.Carlo Nicolai - manuscript
    When are two formal theories of broadly logical concepts, such as truth, equivalent? The paper investigates a case study, involving two well-known variants Kripke-Feferman truth. The first, KF+CONS, features a consistent but partial truth predicate. The second, KF+COMP, an inconsistent but complete truth predicate. It is well-known that the two truth predicates are dual to each other. We show that this duality reveals a much stricter correspondence between the two theories: they are intertraslatable. Intertranslatability under natural assumptions coincides with definitional (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Everything, More or Less: A Defence of Generality Relativism, by J. P. Studd. [REVIEW]Luca Incurvati - 2021 - Mind 131 (524):1311-1321.
    The long-standing dispute between absolutists and relativists traditionally focuses on whether there are absolute truths, absolute epistemic norms, and absolute.
    Download  
     
    Export citation  
     
    Bookmark  
  • Bolzano’s Mathematical Infinite.Anna Bellomo & Guillaume Massas - 2021 - Review of Symbolic Logic:1-55.
    Bernard Bolzano (1781–1848) is commonly thought to have attempted to develop a theory of size for infinite collections that follows the so-called part–whole principle, according to which the whole is always greater than any of its proper parts. In this paper, we develop a novel interpretation of Bolzano’s mature theory of the infinite and show that, contrary to mainstream interpretations, it is best understood as a theory of infinite sums. Our formal results show that Bolzano’s infinite sums can be equipped (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Explication as a Three-Step Procedure: the case of the Church-Turing Thesis.Matteo De Benedetto - 2021 - European Journal for Philosophy of Science 11 (1):1-28.
    In recent years two different axiomatic characterizations of the intuitive concept of effective calculability have been proposed, one by Sieg and the other by Dershowitz and Gurevich. Analyzing them from the perspective of Carnapian explication, I argue that these two characterizations explicate the intuitive notion of effective calculability in two different ways. I will trace back these two ways to Turing’s and Kolmogorov’s informal analyses of the intuitive notion of calculability and to their respective outputs: the notion of computorability and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Abstraction without exceptions.Luca Zanetti - 2021 - Philosophical Studies 178 (10):3197-3216.
    Wright claims that “the epistemology of good abstraction principles should be assimilated to that of basic principles of logical inference”. In this paper I follow Wright’s recommendation, but I consider a different epistemology of logic, namely anti-exceptionalism. Anti-exceptionalism’s main contention is that logic is not a priori, and that the choice between rival logics should be based on abductive criteria such as simplicity, adequacy to the data, strength, fruitfulness, and consistency. This paper’s goal is to lay down the foundations for (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Reassessment of Cantorian Abstraction based on the $$\varepsilon $$ ε -operator.Nicola Bonatti - 2022 - Synthese 200 (5):1-26.
    Cantor’s abstractionist account of cardinal numbers has been criticized by Frege as a psychological theory of numbers which leads to contradiction. The aim of the paper is to meet these objections by proposing a reassessment of Cantor’s proposal based upon the set theoretic framework of Bourbaki—called BK—which is a First-order set theory extended with Hilbert’s \-operator. Moreover, it is argued that the BK system and the \-operator provide a faithful reconstruction of Cantor’s insights on cardinal numbers. I will introduce first (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Ideal Objects for Set Theory.Santiago Jockwich, Sourav Tarafder & Giorgio Venturi - 2022 - Journal of Philosophical Logic 51 (3):583-602.
    In this paper, we argue for an instrumental form of existence, inspired by Hilbert’s method of ideal elements. As a case study, we consider the existence of contradictory objects in models of non-classical set theories. Based on this discussion, we argue for a very liberal notion of existence in mathematics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Frameworks, models, and case studies: a new methodology for studying conceptual change in science and philosophy.Matteo De Benedetto - 2022 - Dissertation, Ludwig Maximilians Universität, München
    This thesis focuses on models of conceptual change in science and philosophy. In particular, I developed a new bootstrapping methodology for studying conceptual change, centered around the formalization of several popular models of conceptual change and the collective assessment of their improved formal versions via nine evaluative dimensions. Among the models of conceptual change treated in the thesis are Carnap’s explication, Lakatos’ concept-stretching, Toulmin’s conceptual populations, Waismann’s open texture, Mark Wilson’s patches and facades, Sneed’s structuralism, and Paul Thagard’s conceptual revolutions. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Sets, lies, and analogy: a new methodological take.Giulia Terzian - 2020 - Philosophical Studies 178 (9):2759-2784.
    The starting point of this paper is a claim defended most famously by Graham Priest: that given certain observed similarities between the set-theoretic and the semantic paradoxes, we should be looking for a ‘uniform solution’ to the members of both families. Despite its indisputable surface attractiveness, I argue that this claim hinges on a problematic reasoning move. This is seen most clearly, I suggest, when the claim and its underlying assumptions are examined by the lights of a novel, quite general (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Gaps, gluts, and theoretical equivalence.Carlo Nicolai - 2022 - Synthese 200 (5):1-22.
    When are two formal theories of broadly logical concepts, such as truth, equivalent? The paper investigates a case study, involving two well-known variants of Kripke–Feferman truth. The first, \, features a consistent but partial truth predicate. The second, \, an inconsistent but complete truth predicate. It is known that the two truth predicates are dual to each other. We show that this duality reveals a much stricter correspondence between the two theories: they are intertraslatable. Intertranslatability, under natural assumptions, coincides with (...)
    Download  
     
    Export citation  
     
    Bookmark