Switch to: References

Citations of:

Book Reviews [Book Review]

Studia Logica 69 (3):429-455 (2001)

Add citations

You must login to add citations.
  1. An Overview of Type Theories.Nino Guallart - 2015 - Axiomathes 25 (1):61-77.
    Pure type systems arise as a generalisation of simply typed lambda calculus. The contemporary development of mathematics has renewed the interest in type theories, as they are not just the object of mere historical research, but have an active role in the development of computational science and core mathematics. It is worth exploring some of them in depth, particularly predicative Martin-Löf’s intuitionistic type theory and impredicative Coquand’s calculus of constructions. The logical and philosophical differences and similarities between them will be (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Generalising canonical extension to the categorical setting.Dion Coumans - 2012 - Annals of Pure and Applied Logic 163 (12):1940-1961.
    Canonical extension has proven to be a powerful tool in algebraic study of propositional logics. In this paper we describe a generalisation of the theory of canonical extension to the setting of first order logic. We define a notion of canonical extension for coherent categories. These are the categorical analogues of distributive lattices and they provide categorical semantics for coherent logic, the fragment of first order logic in the connectives ∧, ∨, 0, 1 and ∃. We describe a universal property (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Coreflections in Algebraic Quantum Logic.Bart Jacobs & Jorik Mandemaker - 2012 - Foundations of Physics 42 (7):932-958.
    Various generalizations of Boolean algebras are being studied in algebraic quantum logic, including orthomodular lattices, orthomodular po-sets, orthoalgebras and effect algebras. This paper contains a systematic study of the structure in and between categories of such algebras. It does so via a combination of totalization (of partially defined operations) and transfer of structure via coreflections.
    Download  
     
    Export citation  
     
    Bookmark  
  • A type-theoretical approach for ontologies: The case of roles.Patrick Barlatier & Richard Dapoigny - 2012 - Applied ontology 7 (3):311-356.
    In the domain of ontology design as well as in Knowledge Representation, modeling universals is a challenging problem.Most approaches that have addressed this problem rely on Description Logics (DLs) but many difficulties remain, due to under-constrained representation which reduces the inferences that can be drawn and further causes problems in expressiveness. In mathematical logic and program checking, type theories have proved to be appealing but, so far they have not been applied in the formalization of ontologies. To bridge this gap, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Categories, sets and the nature of mathematical entities.Jean-Pierre Marquis - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today. Dordrecht, Netherland: Springer. pp. 181--192.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Logic, Mathematics, Philosophy, Vintage Enthusiasms: Essays in Honour of John L. Bell.David DeVidi, Michael Hallett & Peter Clark (eds.) - 2011 - Dordrecht, Netherland: Springer.
    The volume includes twenty-five research papers presented as gifts to John L. Bell to celebrate his 60th birthday by colleagues, former students, friends and admirers. Like Bell’s own work, the contributions cross boundaries into several inter-related fields. The contributions are new work by highly respected figures, several of whom are among the key figures in their fields. Some examples: in foundations of maths and logic ; analytical philosophy, philosophy of science, philosophy of mathematics and decision theory and foundations of economics. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Generality of Logical Types.Brice Halimi - 2011 - Russell: The Journal of Bertrand Russell Studies 31 (1):85-107.
    My aim is to examine logical types in _Principia Mathematica_ from two (partly independent) perspectives. The first one pertains to the ambiguity of the notion of logical type as introduced in the Introduction (to the first edition). I claim that a distinction has to be made between types as called for in the context of paradoxes, and types as logical prototypes. The second perspective bears on typical ambiguity as described in Russell and Whitehead’s “Prefatory Statement of Symbolic Conventions”, inasmuch as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Structured Variables.B. Halimi - 2013 - Philosophia Mathematica 21 (2):220-246.
    Drawing on Russell's substitutional theory, this paper examines the notion of ‘structured variable’, in order to compare Russell's and Tarski's conceptions of variables. The framework of syntactic fibrations, coming from categorical logic, is used as a common setting. The main objective of this paper is to make sense of the notion of structured variable beyond the context of Russell's theory, to question the Tarskian way of understanding what it is to be a possible value for a variable, and to bring (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Development of Categorical Logic.John L. Bell - unknown
    5.5. Every topos is linguistic: the equivalence theorem.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today.Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.) - 2006 - Dordrecht, Netherland: Springer.
    This book explores the interplay between logic and science, describing new trends, new issues and potential research developments.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The meaning of category theory for 21st century philosophy.Alberto Peruzzi - 2006 - Axiomathes 16 (4):424-459.
    Among the main concerns of 20th century philosophy was that of the foundations of mathematics. But usually not recognized is the relevance of the choice of a foundational approach to the other main problems of 20th century philosophy, i.e., the logical structure of language, the nature of scientific theories, and the architecture of the mind. The tools used to deal with the difficulties inherent in such problems have largely relied on set theory and its “received view”. There are specific issues, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Fibred algebraic semantics for a variety of non-classical first-order logics and topological logical translation.Yoshihiro Maruyama - 2021 - Journal of Symbolic Logic 86 (3):1189-1213.
    Lawvere hyperdoctrines give categorical algebraic semantics for intuitionistic predicate logic. Here we extend the hyperdoctrinal semantics to a broad variety of substructural predicate logics over the Typed Full Lambek Calculus, verifying their completeness with respect to the extended hyperdoctrinal semantics. This yields uniform hyperdoctrinal completeness results for numerous logics such as different types of relevant predicate logics and beyond, which are new results on their own; i.e., we give uniform categorical semantics for a broad variety of non-classical predicate logics. And (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Epistemology Versus Ontology: Essays on the Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf.Peter Dybjer, Sten Lindström, Erik Palmgren & Göran Sundholm (eds.) - 2012 - Dordrecht, Netherland: Springer.
    This book brings together philosophers, mathematicians and logicians to penetrate important problems in the philosophy and foundations of mathematics. In philosophy, one has been concerned with the opposition between constructivism and classical mathematics and the different ontological and epistemological views that are reflected in this opposition. The dominant foundational framework for current mathematics is classical logic and set theory with the axiom of choice. This framework is, however, laden with philosophical difficulties. One important alternative foundational programme that is actively pursued (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Models of Martin-Löf Type Theory From Algebraic Weak Factorisation Systems.Nicola Gambino & Marco Federico Larrea - 2023 - Journal of Symbolic Logic 88 (1):242-289.
    We introduce type-theoretic algebraic weak factorisation systems and show how they give rise to homotopy-theoretic models of Martin-Löf type theory. This is done by showing that the comprehension category associated with a type-theoretic algebraic weak factorisation system satisfies the assumptions necessary to apply a right adjoint method for splitting comprehension categories. We then provide methods for constructing several examples of type-theoretic algebraic weak factorisation systems, encompassing the existing groupoid and cubical sets models, as well as new models based on normal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Handbook of philosophical logic. [REVIEW]Graham White - 2004 - History and Philosophy of Logic 25 (2):147-152.
    D. M. GABBAY and F. GUENTHER, Handbook of philosophical logic, 2nd edn, vol. 9. Dordrecht, Boston, London: Kluwer, 2002. xiv + 368 pp. €129.00, US$112.00, £79.00. ISBN1 402 00699 3. The philo...
    Download  
     
    Export citation  
     
    Bookmark  
  • Cartesian closed Dialectica categories.Bodil Biering - 2008 - Annals of Pure and Applied Logic 156 (2):290-307.
    When Gödel developed his functional interpretation, also known as the Dialectica interpretation, his aim was to prove consistency of first order arithmetic by reducing it to a quantifier-free theory with finite types. Like other functional interpretations Gödel’s Dialectica interpretation gives rise to category theoretic constructions that serve both as new models for logic and semantics and as tools for analysing and understanding various aspects of the Dialectica interpretation itself. Gödel’s Dialectica interpretation gives rise to the Dialectica categories , in: Contemp. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quotient Completion for the Foundation of Constructive Mathematics.Maria Emilia Maietti & Giuseppe Rosolini - 2013 - Logica Universalis 7 (3):371-402.
    We apply some tools developed in categorical logic to give an abstract description of constructions used to formalize constructive mathematics in foundations based on intensional type theory. The key concept we employ is that of a Lawvere hyperdoctrine for which we describe a notion of quotient completion. That notion includes the exact completion on a category with weak finite limits as an instance as well as examples from type theory that fall apart from this.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • What is categorical structuralism?Geoffrey Hellman - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today. Dordrecht, Netherland: Springer. pp. 151--161.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A characterisation of elementary fibrations.Jacopo Emmenegger, Fabio Pasquali & Giuseppe Rosolini - 2022 - Annals of Pure and Applied Logic 173 (6):103103.
    Download  
     
    Export citation  
     
    Bookmark  
  • A characterization of generalized existential completions.Maria Emilia Maietti & Davide Trotta - 2023 - Annals of Pure and Applied Logic 174 (4):103234.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A characterization of those categories whose internal logic is Hilbert's ε-calculus.Fabio Pasquali - 2019 - Annals of Pure and Applied Logic 170 (4):446-464.
    Download  
     
    Export citation  
     
    Bookmark  
  • Involutive Categories and Monoids, with a GNS-Correspondence.Bart Jacobs - 2012 - Foundations of Physics 42 (7):874-895.
    This paper develops the basics of the theory of involutive categories and shows that such categories provide the natural setting in which to describe involutive monoids. It is shown how categories of Eilenberg-Moore algebras of involutive monads are involutive, with conjugation for modules and vector spaces as special case. A part of the so-called Gelfand–Naimark–Segal (GNS) construction is identified as an isomorphism of categories, relating states on involutive monoids and inner products. This correspondence exists in arbritrary involutive symmetric monoidal categories.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Equality of proofs for linear equality.Kosta Došen & Zoran Petrić - 2008 - Archive for Mathematical Logic 47 (6):549-565.
    This paper is about equality of proofs in which a binary predicate formalizing properties of equality occurs, besides conjunction and the constant true proposition. The properties of equality in question are those of a preordering relation, those of an equivalence relation, and other properties appropriate for an equality relation in linear logic. The guiding idea is that equality of proofs is induced by coherence, understood as the existence of a faithful functor from a syntactical category into a category whose arrows (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation