Switch to: References

Citations of:

The philosophy of quantum mechanics

New York,: Wiley. Edited by Max Jammer (1974)

Add citations

You must login to add citations.
  1. (1 other version)Macroscopic oil droplets mimicking quantum behavior: How far can we push an analogy?Louis Vervoort & Yves Gingras - manuscript
    We describe here a series of experimental analogies between fluid mechanics and quantum mechanics recently discovered by a team of physicists. These analogies arise in droplet systems guided by a surface (or pilot) wave. We argue that these experimental facts put ancient theoretical work by Madelung on the analogy between fluid and quantum mechanics into new light. After re-deriving Madelung’s result starting from two basic fluid-mechanical equations (the Navier-Stokes equation and the continuity equation), we discuss the relation with the de (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Probabilistic and Geometric Languages in the Context of the Principle of Least Action.Vladislav E. Terekhovich - 2012 - Philosophy of Science. Novosibirsk 1:80-92.
    This paper explores the issue of the unification of three languages of physics, the geometric language of forces, geometric language of fields or 4-dimensional space-time, and probabilistic language of quantum mechanics. On the one hand, equations in each language may be derived from the Principle of Least Action (PLA). On the other hand, Feynman's path integral method could explain the physical meaning of PLA. The axioms of classical and relativistic mechanics can be considered as consequences of Feynman's formulation of quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The concept of quantum state: new views on old phenomena.Michel Paty - 2003 - In A. Ashtekar (ed.), Revisiting the Foundations of Relativistic Physics. pp. 451--478.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Three Philosophical Approaches to Entomology.Jean-Marc Drouin - 2013 - In Hanne Andersen, Dennis Dieks, Wenceslao J. Gonzalez, Thomas Uebel & Gregory Wheeler (eds.), New Challenges to Philosophy of Science. Springer Verlag. pp. 377--386.
    Download  
     
    Export citation  
     
    Bookmark  
  • There's reconstruction, and there's behavior control.Donald M. Baer - 1986 - Behavioral and Brain Sciences 9 (4):699-700.
    Download  
     
    Export citation  
     
    Bookmark  
  • Genetic factors in behaviour: The return of the repressed.Hans J. Eysenck - 1986 - Behavioral and Brain Sciences 9 (4):703-704.
    Download  
     
    Export citation  
     
    Bookmark  
  • Light as a metaphor of science: A pre-established disharmony.Luigi Borzacchini - 2001 - Semiotica 2001 (136).
    Download  
     
    Export citation  
     
    Bookmark  
  • (3 other versions)Möglichkeit, Wirklichkeit und Quantenmechanik.Boris Koznjak - 2007 - Prolegomena 6 (2):223-252.
    In this paper a possible interpretative value of Aristotle’s fundamental ontological doctrine of potentiality and actuality is considered in the context of operationally undoubtedly the most successful but interpretatively still controversial theory of modern physics – quantum mechanics – especially regarding understanding the nature of the world, the phenomena of which it describes and predicts so successfully. In particular, beings of the atomic world are interpreted as real potential beings actualized by the measurement process in appropriate experimental arrangement, and the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Objective Probability and Quantum Fuzziness.U. Mohrhoff - 2009 - Foundations of Physics 39 (2):137-155.
    This paper offers a critique of the Bayesian interpretation of quantum mechanics with particular focus on a paper by Caves, Fuchs, and Schack containing a critique of the “objective preparations view” or OPV. It also aims to carry the discussion beyond the hardened positions of Bayesians and proponents of the OPV. Several claims made by Caves et al. are rebutted, including the claim that different pure states may legitimately be assigned to the same system at the same time, and the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Towards a Neo-Copenhagen Interpretation of Quantum Mechanics.Willem M. de Muynck - 2004 - Foundations of Physics 34 (5):717-770.
    The Copenhagen interpretation is critically considered. A number of ambiguities, inconsistencies and confusions are discussed. It is argued that it is possible to purge the interpretation so as to obtain a consistent and reasonable way to interpret the mathematical formalism of quantum mechanics, which is in agreement with the way this theory is dealt with in experimental practice. In particular, the essential role attributed by the Copenhagen interpretation to measurement is acknowledged. For this reason it is proposed to refer to (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Probabilities and Quantum Reality: Are There Correlata? [REVIEW]Robert B. Griffiths - 2003 - Foundations of Physics 33 (10):1423-1459.
    Any attempt to introduce probabilities into quantum mechanics faces difficulties due to the mathematical structure of Hilbert space, as reflected in Birkhoff and von Neumann's proposal for a quantum logic. The (consistent or decoherent) histories solution is provided by its single framework rule, an approach that includes conventional (Copenhagen) quantum theory as a special case. Mermin's Ithaca interpretation addresses the same problem by defining probabilities which make no reference to a sample space or event algebra (“correlations without correlata”). But this (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Photon wave-particle duality and virtual electromagnetic waves.C. Meis - 1997 - Foundations of Physics 27 (6):865-873.
    The question of the relation between the amplitude of the photon vector potential and its angular frequency is analyzed. The analogy between the relativistic quantum mechanical equations for a massles particle and those governing the photon vector potential appears clearly. Finally, the virtual electromagnetic waves associated with the photon and predicted by de Broglie, Bohr, and other appear naturally as a result of the photon vector potential quantification.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum statistical determinism.Eftichios Bitsakis - 1988 - Foundations of Physics 18 (3):331-355.
    This paper attempts to analyze the concept of quantum statistical determinism. This is done after we have clarified the epistemic difference between causality and determinism and discussed the content of classical forms of determinism—mechanical and dynamical. Quantum statistical determinism transcends the classical forms, for it expresses the multiple potentialities of quantum systems. The whole argument is consistent with a statistical interpretation of quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the impossible pilot wave.J. S. Bell - 1982 - Foundations of Physics 12 (10):989-999.
    The strange story of the von Neumann impossibility proof is recalled, and the even stranger story of later impossibility proofs, and how the impossible was done by de Broglie and Bohm. Morals are drawn.
    Download  
     
    Export citation  
     
    Bookmark   83 citations  
  • Spin correlation in stochastic mechanics.William G. Faris - 1982 - Foundations of Physics 12 (1):1-26.
    Stochastic mechanics may be used to described the spin of atomic particles. The spin variables have the same expectations as in quantum mechanics, but not the same distributions. They play the role of hidden variables that influence, but do not determine, the results of Stern-Gerlach experiments involving magnets. During the course of such an experiment spin becomes correlated with position. The case of two particles with zero total spin occurs in Bohm's version of the Einstein-Rosen-Podolsky experiment.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Entropy in operational statistics and quantum logic.Carl A. Hein - 1979 - Foundations of Physics 9 (9-10):751-786.
    In a series of recent papers, Randall and Foulis have developed a generalized theory of probability (operational statistics) which is based on the notion of a physical operation. They have shown that the quantum logic description of quantum mechanics can be naturally imbedded into this generalized theory of probability. In this paper we shall investigate the role of entropy (in the sense of Shannon's theory of information) in operational statistics. We shall find that there are several related entropy concepts in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Weak-measurement elements of reality.Lev Vaidman - 1996 - Foundations of Physics 26 (7):895-906.
    A brief review of the attempts to define “elements of reality” in the framework of quantum theory is presented. It is noted that most definitions of elements of reality have in common the feature to be a definite outcome of some measurement. Elements of reality are extended to pre- and post- selected systems and to measurements which fulfill certain criteria of weakness of the coupling. Some features of the newly introduced concepts are discussed.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Reflective Metaphysics: Understanding Quantum Mechanics from a Kantian Standpoint.Michel Bitbol - 2010 - Philosophica 83 (1):53-83.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Are the Laws of Quantum Logic Laws of Nature?Peter Mittelstaedt - 2012 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 43 (2):215-222.
    The main goal of quantum logic is the bottom-up reconstruction of quantum mechanics in Hilbert space. Here we discuss the question whether quantum logic is an empirical structure or a priori valid. There are good reasons for both possibilities. First, with respect to the possibility of a rational reconstruction of quantum mechanics, quantum logic follows a priori from quantum ontology and can thus not be considered as a law of nature. Second, since quantum logic allows for a reconstruction of quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A deterministic event tree approach to uncertainty, randomness and probability in individual chance processes.Hector A. Munera - 1992 - Theory and Decision 32 (1):21-55.
    Download  
     
    Export citation  
     
    Bookmark  
  • Recovering Quantum Logic Within an Extended Classical Framework.Claudio Garola & Sandro Sozzo - 2013 - Erkenntnis 78 (2):399-419.
    We present a procedure which allows us to recover classical and nonclassical logical structures as concrete logics associated with physical theories expressed by means of classical languages. This procedure consists in choosing, for a given theory ${{\mathcal{T}}}$ and classical language ${{\fancyscript{L}}}$ expressing ${{\mathcal{T}}, }$ an observative sublanguage L of ${{\fancyscript{L}}}$ with a notion of truth as correspondence, introducing in L a derived and theory-dependent notion of C-truth (true with certainty), defining a physical preorder $\prec$ induced by C-truth, and finally selecting (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Towards a General Theory of Reduction. Part I: Historical and Scientific Setting.C. A. Hooker - 1981 - Dialogue 20 (1):38-59.
    The Three Papers comprising this series, together with my earlier [34] also published in this journal, constitute an attempt to set out the major issues in the theoretical domain of reduction and to develop a general theory of theory reduction. The fourth paper, [34], though published separately from this trio, is integral to the presentation and should be read in conjunction with these papers. Even so, the presentation is limited in scope – roughly, to intertheoretic reduction among empirical theories – (...)
    Download  
     
    Export citation  
     
    Bookmark   135 citations  
  • Quantum Mechanics and "Song of Myself": Getting a Grip on Reality.Robert M. Schaible - 2003 - Zygon 38 (1):25-48.
    Most recent writing linking science and literature has concerned itself with challenges to the epistemological status of scientific knowledge in an attempt to demonstrate its contingency, arguing in the more radical efforts that the structures of science are no more than useful fictions. This essay also includes an epistemological comparison between science and literature, but instead of making grand or meta–statements about the nature of knowing generally in the two fields, mine is a much narrower aim. My exploration entails two (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Time-Like Nature of Mind: On Mind Functions as Tem Poral Patterns of the Neural Network.Roland Fischer - 1989 - Diogenes 37 (147):52-76.
    It follows from the temporal nature of mind—the main concern of this essay—that mind functions are not localized in brain space.“ Time is extendedness, probably of the mind itself”, concludes Saint Augustine in Book XI of his Confessions (26.33), and, in our days, this extendedness can be made visible through an oscilloscopic “line” or trace of slow potentials. These graded, additive (not all-or-none) autorhythmic and seemingly self-generating potentials are primary events recorded at synapses. Autorhythmic brain structures (Zabara, 1973) appear to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Niels Bohr’s Interpretation and the Copenhagen Interpretation—Are the Two Incompatible?Ravi Gomatam - 2007 - Philosophy of Science 74 (5):736-748.
    The Copenhagen interpretation, which informs the textbook presentation of quantum mechanics, depends fundamentally on the notion of ontological wave-particle duality and a viewpoint called “complementarity.” In this paper, Bohr's own interpretation is traced in detail and is shown to be fundamentally different from and even opposed to the Copenhagen interpretation in virtually all its particulars. In particular, Bohr's interpretation avoids the ad hoc postulate of wave function ‘collapse' that is central to the Copenhagen interpretation. The strengths and weakness of both (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The quantum mechanical path integral: Toward a realistic interpretation.Mark Sharlow - 2007
    In this paper, I explore the feasibility of a realistic interpretation of the quantum mechanical path integral - that is, an interpretation according to which the particle actually follows the paths that contribute to the integral. I argue that an interpretation of this sort requires spacetime to have a branching structure similar to the structures of the branching spacetimes proposed by previous authors. I point out one possible way to construct branching spacetimes of the required sort, and I ask whether (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What branching spacetime might do for physics.Mark Sharlow - 2007
    In recent years, the branching spacetime (BST) interpretation of quantum mechanics has come under study by a number of philosophers, physicists and mathematicians. This paper points out some implications of the BST interpretation for two areas of quantum physics: (1) quantum gravity, and (2) stochastic interpretations of quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • 'Charge without charge' in the stochastic interpretation of quantum mechanics.Mark Sharlow - 2007
    In this note I examine some implications of stochastic interpretations of quantum mechanics for the concept of "charge without charge" presented by Wheeler and Misner. I argue that if a stochastic interpretation of quantum mechanics were correct, then certain shortcomings of the "charge without charge" concept could be overcome.
    Download  
     
    Export citation  
     
    Bookmark  
  • Between classical and quantum.Nicolaas P. Landsman - 2007 - Handbook of the Philosophy of Science 2:417--553.
    The relationship between classical and quantum theory is of central importance to the philosophy of physics, and any interpretation of quantum mechanics has to clarify it. Our discussion of this relationship is partly historical and conceptual, but mostly technical and mathematically rigorous, including over 500 references. For example, we sketch how certain intuitive ideas of the founders of quantum theory have fared in the light of current mathematical knowledge. One such idea that has certainly stood the test of time is (...)
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • Dispositions, relational properties and the quantum world.Mauro Dorato - 2017 - In Maximilien Kistler (ed.), Dispositions and Causal Powers, Routledge, 2017,. London: Routledge. pp. pp.249-270..
    In this paper I examine the role of dispositional properties in the most frequently discussed interpretations of non-relativistic quantum mechanics. After offering some motivation for this project, I briefly characterize the distinction between non-dispositional and dispositional properties in the context of quantum mechanics by suggesting a necessary condition for dispositionality – namely contextuality – and, consequently, a sufficient condition for non-dispositionality, namely non-contextuality. Having made sure that the distinction is conceptually sound, I then analyze the plausibility of the widespread, monistic (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (1 other version)Time, quantum mechanics, and decoherence.Simon Saunders - 1995 - Synthese 102 (2):235 - 266.
    State-reduction and the notion of actuality are compared to passage through time and the notion of the present; already in classical relativity the latter give rise to difficulties. The solution proposed here is to treat both tense and value-definiteness as relational properties or facts as relations; likewise the notions of change and probability. In both cases essential characteristics are absent: temporal relations are tenselessly true; probabilistic relations are deterministically true. The basic ideas go back to Everett, although the technical development (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Operationalism as the Philosophy of Soviet Physics: The Philosophical Backgrounds of L. I. Mandelstam and His School.A. A. Pechenkin - 2000 - Synthese 124 (3):407-432.
    This article is dedicated to the philosophy ofscience which was developed by the outstanding Soviet physicist and leader of a powerful scientificcommunity, L. I. Mandelstam. It is shown that thisphilosophy can be summed up under the heading operationalism. A comparison with the paradigmaticoperationalism of Percy Bridgman is undertaken andthe German positivist roots of Mandelstam's philosophyare indicated. The final section reconstructs the principle ofexpedient idealization, the principle which was putforward by Mandelstam's disciples in the spirit of hisoperationalism to solve problems of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The quantum and classical domains as provisional parallel coexistents.Michel Paty - 2000 - Synthese 125 (1-2):179-200.
    We consider the problem of therelationship between the quantum and theclassical domains from the point of view that itis possible to speak of a direct physicaldescription of quantum systems havingphysical properties. We put emphasis, inevidencing it, on the specific quantum conceptof indistinguishability of identical in aconceptual way (and not in a logical way in thevein of ``da Costa's school''). In essence, thesubsequent argumentation deals with therelationship between the classical and thequantum, with the problem of the quantum theoryof measurement. Even in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The connexion between Reichenbach's three-valued and V. Neumann's lattice-theoretical quantum logic.Andreas Kamlah - 1981 - Erkenntnis 16 (3):315 - 325.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Why the principle of the identity of indiscernibles is not contingently true either.Steven French - 1989 - Synthese 78 (2):141 - 166.
    Faced with strong arguments to the effect that Leibniz''sPrinciple of the Identity of Indiscernibles (PII) is not a necessary truth, many supporters of the Principle have staged a strategic retreat to the claim that it is contingently true in this, the actual, world. The purpose of this paper is to examine the status of the various forms of PII in both classical and quantum physics, and it is concluded that this latter view is at best doubtful, at worst, simply wrong.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Quantum propensiton theory: A testable resolution of the wave/particle dilemma.Nicholas Maxwell - 1988 - British Journal for the Philosophy of Science 39 (1):1-50.
    In this paper I put forward a new micro realistic, fundamentally probabilistic, propensiton version of quantum theory. According to this theory, the entities of the quantum domain - electrons, photons, atoms - are neither particles nor fields, but a new kind of fundamentally probabilistic entity, the propensiton - entities which interact with one another probabilistically. This version of quantum theory leaves the Schroedinger equation unchanged, but reinterprets it to specify how propensitons evolve when no probabilistic transitions occur. Probabilisitic transitions occur (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • (1 other version)Weak Quantum Theory: Complementarity and Entanglement in Physics and Beyond. [REVIEW]Harald Atmanspacher - 2002 - Foundations of Physics 32 (3):379-406.
    The concepts of complementarity and entanglement are considered with respect to their significance in and beyond physics. A formally generalized, weak version of quantum theory, more general than ordinary quantum theory of physical systems, is outlined and tentatively applied to two examples.
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Quantum Approaches to Consciousness.Harald Atmanspacher - 2006 - Stanford Encyclopedia of Philosophy.
    It is widely accepted that consciousness or, more generally, mental activity is in some way correlated to the behavior of the material brain. Since quantum theory is the most fundamental theory of matter that is currently available, it is a legitimate question to ask whether quantum theory can help us to understand consciousness. Several approaches answering this question affirmatively, proposed in recent decades, will be surveyed. It will be pointed out that they make different epistemological assumptions, refer to different neurophysiological (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • What is information?Olimpia Lombardi - 2004 - Foundations of Science 9 (2):105-134.
    The main aim of this work is to contribute tothe elucidation of the concept of informationby comparing three different views about thismatter: the view of Fred Dretske's semantictheory of information, the perspective adoptedby Peter Kosso in his interaction-informationaccount of scientific observation, and thesyntactic approach of Thomas Cover and JoyThomas. We will see that these views involvevery different concepts of information, eachone useful in its own field of application. This comparison will allow us to argue in favorof a terminological `cleansing': it (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Towards a process-based approach to consciousness and collapse in quantum mechanics.Raoni Arroyo, Lauro de Matos Nunes Filho & Frederik Moreira Dos Santos - 2024 - Manuscrito 47 (1):2023-0047.
    According to a particular interpretation of quantum mechanics, the causal role of human consciousness in the measuring process is called upon to solve a foundational problem called the “measurement problem.” Traditionally, this interpretation is tied up with the metaphysics of substance dualism. As such, this interpretation of quantum mechanics inherits the dualist’s mind-body problem. Our working hypothesis is that a process-based approach to the consciousness causes collapse interpretation (CCCI) ---leaning on Whitehead’s solution to the mind-body problem--- offers a better metaphysical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Pointers for Quantum Measurement Theory.Jay Lawrence - 2023 - Foundations of Physics 53 (4):1-17.
    In the iconic measurements of atomic spin-1/2 or photon polarization, one employs two separate noninteracting detectors. Each detector is binary, registering the presence or absence of the atom or the photon. For measurements on a d-state particle, we recast the standard von Neumann measurement formalism by replacing the familiar pointer variable with an array of such detectors, one for each of the d possible outcomes. We show that the unitary dynamics of the pre-measurement process restricts the detector outputs to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modalité et changement: δύναμις et cinétique aristotélicienne.Marion Florian - 2023 - Dissertation, Université Catholique de Louvain
    The present PhD dissertation aims to examine the relation between modality and change in Aristotle’s metaphysics. -/- On the one hand, Aristotle supports his modal realism (i.e., worldly objects have modal properties - potentialities and essences - that ground the ascriptions of possibility and necessity) by arguing that the rejection of modal realism makes change inexplicable, or, worse, banishes it from the realm of reality. On the other hand, the Stagirite analyses processes by means of modal notions (‘change is the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • How Certain is Heisenberg’s Uncertainty Principle?David Atkinson & Jeanne Peijnenburg - 2022 - Hopos: The Journal of the International Society for the History of Philosophy of Science 12 (1):1-21.
    Heisenberg’s uncertainty principle is a milestone of twentieth-century physics. We sketch the history that led to the formulation of the principle, and we recall the objections of Grete Hermann and Niels Bohr. Then we explain that there are in fact two uncertainty principles. One was published by Heisenberg in the Zeitschrift für Physik of March 1927 and subsequently targeted by Bohr and Hermann. The other one was introduced by Earle Kennard in the same journal a couple of months later. While (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Time-Identity Tradeoff.Nadav M. Shnerb - 2022 - Foundations of Physics 52 (2):1-13.
    Distinguishability plays a major role in quantum and statistical physics. When particles are identical their wave function must be either symmetric or antisymmetric under permutations and the number of microscopic states, which determines entropy, is counted up to permutations. When the particles are distinguishable, wavefunctions have no symmetry and each permutation is a different microstate. This binary and discontinuous classification raises a few questions: one may wonder what happens if particles are almost identical, or when the property that distinguishes between (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Against ‘Interpretation’: Quantum Mechanics Beyond Syntax and Semantics.Raoni Wohnrath Arroyo & Gilson Olegario da Silva - 2022 - Axiomathes 32 (6):1243-1279.
    The question “what is an interpretation?” is often intertwined with the perhaps even harder question “what is a scientific theory?”. Given this proximity, we try to clarify the first question to acquire some ground for the latter. The quarrel between the syntactic and semantic conceptions of scientific theories occupied a large part of the scenario of the philosophy of science in the 20th century. For many authors, one of the two currents needed to be victorious. We endorse that such debate, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Problemas Filosóficos: Uma Introdução à Filosofia / Philosophical Problems: An Introduction to Philosophy.Rodrigo Reis Lastra Cid & Luiz Helvécio Marques Segundo (eds.) - 2020 - Pelotas: Editora da UFPel / UFPel Publisher.
    De um modo geral, queríamos mostrar que a filosofia tem suas próprias áreas, mas tem também subáreas em interdisciplinaridade com as ciências. As ciências e as disciplinas acadêmicas em geral têm problemas, cuja a solução pode ser encontrada empiricamente, por meio de experimentos, entrevistas, documentos, ou formalmente, por meio de cálculos etc, porém os problemas das filosofias dessas disciplinas são justamente os problemas mais fundamentais dessas disciplinas, que fundam o quadro conceitual e de pesquisa das mesmas, e que só poderiam (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Filosofia da Linguagem.Sagid Salles - 2020 - In Rodrigo Reis Lastra Cid & Luiz helvécio Marques Segundo (eds.), Problemas Filosóficos. Editora UFPel. pp. 453-489.
    Este artigo é uma breve introdução à filosofia da linguagem. Ele se concentra nos problemas que surgem a partir de dois conceitos centrais: referência e significado. Em particular, o foco central é no problema fundacional da referência e no problema descritivo do significado, assim como a relação entre eles. Embora esta de modo algum seja uma introdução exaustiva ao tema, muitos conceitos centrais são clarificados, como por exemplo teoria da referência, termo singular, termo geral, teoria do significado, composicionalidade, conteúdo, significado (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Interpretation Misunderstandings about Elementary Quantum Mechanics.Federico G. Lopez Armengol & Gustavo E. Romero - 2017 - Metatheoria – Revista de Filosofía E Historia de la Ciencia 7:55--60.
    Quantum Mechanics is a fundamental physical theory about atomic-scale processes. It was built between 1920 and 1940 by the most distinguished physicists of that time. The accordance between the predictions of the theory and experimental results is remarkable. The physical interpretation of its mathematical constructs, however, raised unprecedented controversies. Ontological, semantic, and epistemic vagueness abound in the orthodox interpretations and have resulted in serious misunderstandings that are often repeated in textbooks and elsewhere. In this work, we identify, criticize, and clarify (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Forewords for the Special Issue ‘Pilot-wave and Beyond: Louis de Broglie and David Bohm’s Quest for a Quantum Ontology’.Aurélien Drezet - 2023 - Foundations of Physics 53 (3):1-9.
    Download  
     
    Export citation  
     
    Bookmark  
  • Encountering Complexity: In Need For A Self-Reflecting (Pre)Epistemology.Vasileios Basios - 2007 - In Avshalom C. Elitzur, Metod Saniga & Rosolino Buccheri (eds.), Endophysics, Time, Quantum and the Subjective. World Scientific Publishing. pp. 547-566.
    We have recently started to understand that fundamental aspects of complex systems such as emergence, the measurement problem, inherent uncertainty, complex causality in connection with unpredictable determinism, time­irreversibility and non­locality all highlight the observer's participatory role in determining their workings. In addition, the principle of 'limited universality' in complex systems, which prompts us to search for the appropriate 'level of description in which unification and universality can be expected', looks like a version of Bohr's 'complementarity principle'. It is more or (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation