Switch to: References

Add citations

You must login to add citations.
  1. Frames and stresses in Einstein's quest for a generalized theory of relativity.Olivier Darrigol - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 68:126-157.
    Download  
     
    Export citation  
     
    Bookmark  
  • Background Independence, Diffeomorphism Invariance, and the Meaning of Coordinates.Oliver Pooley - 2016 - In Dennis Lehmkuhl, Gregor Schiemann & Erhard Scholz (eds.), Towards a Theory of Spacetime Theories. New York, NY: Birkhauser.
    Diffeomorphism invariance is sometimes taken to be a criterion of background independence. This claim is commonly accompanied by a second, that the genuine physical magnitudes (the ``observables'') of background-independent theories and those of background-dependent (non-diffeomorphism-invariant) theories are essentially different in nature. I argue against both claims. Background-dependent theories can be formulated in a diffeomorphism-invariant manner. This suggests that the nature of the physical magnitudes of relevantly analogous theories (one background free, the other background dependent) is essentially the same. The temptation (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • General relativity as a hybrid theory: The genesis of Einstein's work on the problem of motion.Dennis Lehmkuhl - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 67:176-190.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Equivalence Principle(s).Dennis Lehmkuhl - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    I discuss the relationship between different versions of the equivalence principle in general relativity, among them Einstein's equivalence principle, the weak equivalence principle, and the strong equivalence principle. I show that Einstein's version of the equivalence principle is intimately linked to his idea that in GR gravity and inertia are unified to a single field, quite like the electric and magnetic field had been unified in special relativistic electrodynamics. At the same time, what is now often called the strong equivalence (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Second Scientific Revolution: Genesis and Advancement of Non-Classical Science.Rinat M. Nugayev - 2023 - Moscow: Triumph Publishers.
    What were the true reasons of the second scientific revolution? – To answer the question, the epistemic model is applied, according to which radical breakthroughs in science were not due to the fanciful excogitation of new ideas ‘ex nihilo’, but rather to the tedious, long-term and troublesome processes of the mutual lapping, reconciliation, interpenetration and intertwinement of ‘old’ research traditions preceding such breaks. It is contended that Einstein's 'annus mirabilis' constituted an acme of the second scientific revolution. To fathom in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Argument from Physics and General Relativity.Christopher Gregory Weaver - 2020 - Erkenntnis 85 (2):333-373.
    I argue that the best interpretation of the general theory of relativity has need of a causal entity, and causal structure that is not reducible to light cone structure. I suggest that this causal interpretation of GTR helps defeat a key premise in one of the most popular arguments for causal reductionism, viz., the argument from physics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Genesis of General Relativity: Interaction between Einstein’s, Abraham’s and Nordström’s Research Programmes.Rinat M. Nugayev - 2017 - Kairos 19 (1):134-169.
    The arguments are exhibited in favour of the necessity to modify the history of the genesis and advancement of general relativity (GR). I demonstrate that the dynamic creation of GR had been continually governed by internal tensions between two research traditions, that of special relativity and Newton’s gravity. The encounter of the traditions and their interpenetration entailed construction of the hybrid domain at first with an irregular set of theoretical models. Step by step, on eliminating the contradictions between the models (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Why Einstein did not believe that general relativity geometrizes gravity.Dennis Lehmkuhl - unknown
    I argue that, contrary to folklore, Einstein never really cared for geometrizing the gravitational or the electromagnetic field; indeed, he thought that the very statement that General Relativity geometrizes gravity "is not saying anything at all". Instead, I shall show that Einstein saw the "unification" of inertia and gravity as one of the major achievements of General Relativity. Interestingly, Einstein did not locate this unification in the field equations but in his interpretation of the geodesic equation, the law of motion (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • The Forgotten Tradition: How the Logical Empiricists Missed the Philosophical Significance of the Work of Riemann, Christoffel and Ricci.Marco Giovanelli - 2013 - Erkenntnis 78 (6):1219-1257.
    This paper attempts to show how the logical empiricists’ interpretation of the relation between geometry and reality emerges from a “collision” of mathematical traditions. Considering Riemann’s work as the initiator of a 19th century geometrical tradition, whose main protagonists were Helmholtz and Poincaré, the logical empiricists neglected the fact that Riemann’s revolutionary insight flourished instead in a non-geometrical tradition dominated by the works of Christoffel and Ricci-Curbastro roughly in the same years. I will argue that, in the attempt to interpret (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The constitutive a priori and the distinction between mathematical and physical possibility.Jonathan Everett - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):139-152.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Some Concepts of Space, Time, and Lengths in Simplified Chinese*: An Analytical Linguistics Approach.Yang Immanuel Pachankis - 2022 - International Journal of Innovative Science and Research Technology 7 (6):550-562.
    The article explains on the two-year experiment after the author’s finalization of dissertation. The thesis of the dissertation was hidden in the last chapter with analytical linguistics. It was done so with the fascist development of the Chinese Communist regime with neo- Nazi characteristics. Since numerous prior warnings on the political downshifts & coup d’état in China was willfully ignored by the university, the linguistic innovations in dissertation found a balance between multilateralism and outer space (security). The experiments were conducted (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Clarifying possible misconceptions in the foundations of general relativity.Harvey R. Brown & James Read - unknown
    We discuss what we take to be three possible misconceptions in the foundations of general relativity, relating to: the interpretation of the weak equivalence principle and the relationship between gravity and inertia; the connection between gravitational redshift results and spacetime curvature; and the Einstein equivalence principle and the ability to ``transform away" gravity in local inertial coordinate systems.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Three Common Misconceptions in General Relativity.Harvey R. Brown & James Read - unknown
    We highlight and resolve what we take to be three common misconceptions in general relativity, relating to the interpretation of the weak equivalence principle and the relationship between gravity and inertia; the connection between gravitational redshift results and spacetime curvature; and the strong equivalence principle and the local recovery of special relativity in curved, dynamical spacetime.
    Download  
     
    Export citation  
     
    Bookmark