Switch to: References

Add citations

You must login to add citations.
  1. Abelian groups and quadratic residues in weak arithmetic.Emil Jeřábek - 2010 - Mathematical Logic Quarterly 56 (3):262-278.
    We investigate the provability of some properties of abelian groups and quadratic residues in variants of bounded arithmetic. Specifically, we show that the structure theorem for finite abelian groups is provable in S22 + iWPHP, and use it to derive Fermat's little theorem and Euler's criterion for the Legendre symbol in S22 + iWPHP extended by the pigeonhole principle PHP. We prove the quadratic reciprocity theorem in the arithmetic theories T20 + Count2 and I Δ0 + Count2 with modulo-2 counting (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Approximate counting by hashing in bounded arithmetic.Emil Jeřábek - 2009 - Journal of Symbolic Logic 74 (3):829-860.
    We show how to formalize approximate counting via hash functions in subsystems of bounded arithmetic, using variants of the weak pigeonhole principle. We discuss several applications, including a proof of the tournament principle, and an improvement on the known relationship of the collapse of the bounded arithmetic hierarchy to the collapse of the polynomial-time hierarchy.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Upper and lower Ramsey bounds in bounded arithmetic.Kerry Ojakian - 2005 - Annals of Pure and Applied Logic 135 (1-3):135-150.
    Pudlák shows that bounded arithmetic proves an upper bound on the Ramsey number Rr . We will strengthen this result by improving the bound. We also investigate lower bounds, obtaining a non-constructive lower bound for the special case of 2 colors , by formalizing a use of the probabilistic method. A constructive lower bound is worked out for the case when the monochromatic set size is fixed to 3 . The constructive lower bound is used to prove two “reversals”. To (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the correspondence between arithmetic theories and propositional proof systems – a survey.Olaf Beyersdorff - 2009 - Mathematical Logic Quarterly 55 (2):116-137.
    The purpose of this paper is to survey the correspondence between bounded arithmetic and propositional proof systems. In addition, it also contains some new results which have appeared as an extended abstract in the proceedings of the conference TAMC 2008 [11].Bounded arithmetic is closely related to propositional proof systems; this relation has found many fruitful applications. The aim of this paper is to explain and develop the general correspondence between propositional proof systems and arithmetic theories, as introduced by Krajíček and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Substitution Frege and extended Frege proof systems in non-classical logics.Emil Jeřábek - 2009 - Annals of Pure and Applied Logic 159 (1-2):1-48.
    We investigate the substitution Frege () proof system and its relationship to extended Frege () in the context of modal and superintuitionistic propositional logics. We show that is p-equivalent to tree-like , and we develop a “normal form” for -proofs. We establish connections between for a logic L, and for certain bimodal expansions of L.We then turn attention to specific families of modal and si logics. We prove p-equivalence of and for all extensions of , all tabular logics, all logics (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Fragments of approximate counting.Samuel R. Buss, Leszek Aleksander Kołodziejczyk & Neil Thapen - 2014 - Journal of Symbolic Logic 79 (2):496-525.
    We study the long-standing open problem of giving$\forall {\rm{\Sigma }}_1^b$separations for fragments of bounded arithmetic in the relativized setting. Rather than considering the usual fragments defined by the amount of induction they allow, we study Jeřábek’s theories for approximate counting and their subtheories. We show that the$\forall {\rm{\Sigma }}_1^b$Herbrandized ordering principle is unprovable in a fragment of bounded arithmetic that includes the injective weak pigeonhole principle for polynomial time functions, and also in a fragment that includes the surjective weak pigeonhole (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Short propositional refutations for dense random 3CNF formulas.Sebastian Müller & Iddo Tzameret - 2014 - Annals of Pure and Applied Logic 165 (12):1864-1918.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the proof complexity of the nisan–wigderson generator based on a hard np ∩ conp function.Jan Krajíček - 2011 - Journal of Mathematical Logic 11 (1):11-27.
    Let g be a map defined as the Nisan–Wigderson generator but based on an NP ∩ coNP -function f. Any string b outside the range of g determines a propositional tautology τb expressing this fact. Razborov [27] has conjectured that if f is hard on average for P/poly then these tautologies have no polynomial size proofs in the Extended Frege system EF. We consider a more general Statement that the tautologies have no polynomial size proofs in any propositional proof system. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Approximate Counting in Bounded Arithmetic.Emil Jeřábek - 2007 - Journal of Symbolic Logic 72 (3):959 - 993.
    We develop approximate counting of sets definable by Boolean circuits in bounded arithmetic using the dual weak pigeonhole principle (dWPHP(PV)), as a generalization of results from [15]. We discuss applications to formalization of randomized complexity classes (such as BPP, APP, MA, AM) in PV₁ + dWPHP(PV).
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Feasibly constructive proofs of succinct weak circuit lower bounds.Moritz Müller & Ján Pich - 2020 - Annals of Pure and Applied Logic 171 (2):102735.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Proofs with monotone cuts.Emil Jeřábek - 2012 - Mathematical Logic Quarterly 58 (3):177-187.
    Atserias, Galesi, and Pudlák have shown that the monotone sequent calculus MLK quasipolynomially simulates proofs of monotone sequents in the full sequent calculus LK . We generalize the simulation to the fragment MCLK of LK which can prove arbitrary sequents, but restricts cut-formulas to be monotone. We also show that MLK as a refutation system for CNFs quasipolynomially simulates LK.
    Download  
     
    Export citation  
     
    Bookmark  
  • Structures interpretable in models of bounded arithmetic.Neil Thapen - 2005 - Annals of Pure and Applied Logic 136 (3):247-266.
    We look for a converse to a result from [N. Thapen, A model-theoretic characterization of the weak pigeonhole principle, Annals of Pure and Applied Logic 118 175–195] that if the weak pigeonhole principle fails in a model K of bounded arithmetic, then there is an end-extension of K interpretable inside K. We show that if a model J of an induction-free theory of arithmetic is interpretable inside K, then either J is isomorphic to an initial segment of K , or (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The weak pigeonhole principle for function classes in S12.Norman Danner & Chris Pollett - 2006 - Mathematical Logic Quarterly 52 (6):575-584.
    It is well known that S12 cannot prove the injective weak pigeonhole principle for polynomial time functions unless RSA is insecure. In this note we investigate the provability of the surjective weak pigeonhole principle in S12 for provably weaker function classes.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the proof complexity of logics of bounded branching.Emil Jeřábek - 2023 - Annals of Pure and Applied Logic 174 (1):103181.
    Download  
     
    Export citation  
     
    Bookmark  
  • Circuit lower bounds in bounded arithmetics.Ján Pich - 2015 - Annals of Pure and Applied Logic 166 (1):29-45.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Typical forcings, NP search problems and an extension of a theorem of Riis.Moritz Müller - 2021 - Annals of Pure and Applied Logic 172 (4):102930.
    Download  
     
    Export citation  
     
    Bookmark   1 citation