Switch to: References

Add citations

You must login to add citations.
  1. The strength of sharply bounded induction requires M S P.Sedki Boughattas & Leszek Aleksander Kołodziejczyk - 2010 - Annals of Pure and Applied Logic 161 (4):504-510.
    We show that the arithmetical theory -INDx5, formalized in the language of Buss, i.e. with x/2 but without the MSP function x/2y, does not prove that every nontrivial divisor of a power of 2 is even. It follows that this theory proves neither NP=coNP nor.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Independence results for variants of sharply bounded induction.Leszek Aleksander Kołodziejczyk - 2011 - Annals of Pure and Applied Logic 162 (12):981-990.
    The theory , axiomatized by the induction scheme for sharply bounded formulae in Buss’ original language of bounded arithmetic , has recently been unconditionally separated from full bounded arithmetic S2. The method used to prove the separation is reminiscent of those known from the study of open induction.We make the connection to open induction explicit, showing that models of can be built using a “nonstandard variant” of Wilkie’s well-known technique for building models of IOpen. This makes it possible to transfer (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Approximate Counting in Bounded Arithmetic.Emil Jeřábek - 2007 - Journal of Symbolic Logic 72 (3):959 - 993.
    We develop approximate counting of sets definable by Boolean circuits in bounded arithmetic using the dual weak pigeonhole principle (dWPHP(PV)), as a generalization of results from [15]. We discuss applications to formalization of randomized complexity classes (such as BPP, APP, MA, AM) in PV₁ + dWPHP(PV).
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Approximate counting by hashing in bounded arithmetic.Emil Jeřábek - 2009 - Journal of Symbolic Logic 74 (3):829-860.
    We show how to formalize approximate counting via hash functions in subsystems of bounded arithmetic, using variants of the weak pigeonhole principle. We discuss several applications, including a proof of the tournament principle, and an improvement on the known relationship of the collapse of the bounded arithmetic hierarchy to the collapse of the polynomial-time hierarchy.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • End-extensions of models of weak arithmetic from complexity-theoretic containments.Leszek Aleksander Kołodziejczyk - 2016 - Journal of Symbolic Logic 81 (3):901-916.
    We prove that if the linear-time and polynomial-time hierarchies coincide, then every model of Π1 + ¬Ω1has a proper end-extension to a model of Π1, and so Π1 + ¬Ω ⊢ BΣ1. Under an even stronger complexity-theoretic assumption which nevertheless seems hard to disprove using present-day methods, Π1 + ¬Exp ⊢ BΣ1. Both assumptions can be modified to versions which make it possible to replace Π1 by IΔ0as the base theory.We also show that any proof that IΔ0+ ¬Exp does not (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Abelian groups and quadratic residues in weak arithmetic.Emil Jeřábek - 2010 - Mathematical Logic Quarterly 56 (3):262-278.
    We investigate the provability of some properties of abelian groups and quadratic residues in variants of bounded arithmetic. Specifically, we show that the structure theorem for finite abelian groups is provable in S22 + iWPHP, and use it to derive Fermat's little theorem and Euler's criterion for the Legendre symbol in S22 + iWPHP extended by the pigeonhole principle PHP. We prove the quadratic reciprocity theorem in the arithmetic theories T20 + Count2 and I Δ0 + Count2 with modulo-2 counting (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Open induction in a bounded arithmetic for TC0.Emil Jeřábek - 2015 - Archive for Mathematical Logic 54 (3-4):359-394.
    The elementary arithmetic operations +,·,≤\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${+,\cdot,\le}$$\end{document} on integers are well-known to be computable in the weak complexity class TC0, and it is a basic question what properties of these operations can be proved using only TC0-computable objects, i.e., in a theory of bounded arithmetic corresponding to TC0. We will show that the theory VTC0 extended with an axiom postulating the totality of iterated multiplication proves induction for quantifier-free formulas in the language ⟨+,·,≤⟩\documentclass[12pt]{minimal} (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Conservative fragments of $${{S}^{1}{2}}$$ and $${{R}^{1}{2}}$$. [REVIEW]Chris Pollett - 2011 - Archive for Mathematical Logic 50 (3):367-393.
    Conservative subtheories of $${{R}^{1}_{2}}$$ and $${{S}^{1}_{2}}$$ are presented. For $${{S}^{1}_{2}}$$, a slight tightening of Jeřábek’s result (Math Logic Q 52(6):613–624, 2006) that $${T^{0}_{2} \preceq_{\forall \Sigma^{b}_{1}}S^{1}_{2}}$$ is presented: It is shown that $${T^{0}_{2}}$$ can be axiomatised as BASIC together with induction on sharply bounded formulas of one alternation. Within this $${\forall\Sigma^{b}_{1}}$$ -theory, we define a $${\forall\Sigma^{b}_{0}}$$ -theory, $${T^{-1}_{2}}$$, for the $${\forall\Sigma^{b}_{0}}$$ -consequences of $${S^{1}_{2}}$$. We show $${T^{-1}_{2}}$$ is weak by showing it cannot $${\Sigma^{b}_{0}}$$ -define division by 3. We then consider what (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Alternating minima and maxima, Nash equilibria and Bounded Arithmetic.Pavel Pudlák & Neil Thapen - 2012 - Annals of Pure and Applied Logic 163 (5):604-614.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the finite axiomatizability of.Chris Pollett - 2018 - Mathematical Logic Quarterly 64 (1-2):6-24.
    The question of whether the bounded arithmetic theories and are equal is closely connected to the complexity question of whether is equal to. In this paper, we examine the still open question of whether the prenex version of,, is equal to. We give new dependent choice‐based axiomatizations of the ‐consequences of and. Our dependent choice axiomatizations give new normal forms for the ‐consequences of and. We use these axiomatizations to give an alternative proof of the finite axiomatizability of and to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fragments of approximate counting.Samuel R. Buss, Leszek Aleksander Kołodziejczyk & Neil Thapen - 2014 - Journal of Symbolic Logic 79 (2):496-525.
    We study the long-standing open problem of giving$\forall {\rm{\Sigma }}_1^b$separations for fragments of bounded arithmetic in the relativized setting. Rather than considering the usual fragments defined by the amount of induction they allow, we study Jeřábek’s theories for approximate counting and their subtheories. We show that the$\forall {\rm{\Sigma }}_1^b$Herbrandized ordering principle is unprovable in a fragment of bounded arithmetic that includes the injective weak pigeonhole principle for polynomial time functions, and also in a fragment that includes the surjective weak pigeonhole (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations