Switch to: References

Add citations

You must login to add citations.
  1. The preservation of coherence.R. E. Jennings & P. K. Schotch - 1984 - Studia Logica 43:89.
    It is argued that the preservation of truth by an inference relation is of little interest when premiss sets are contradictory. The notion of a level of coherence is introduced and the utility of modal logics in the semantic representation of sets of higher coherence levels is noted. It is shown that this representative role cannot be transferred to first order logic via frame theory since the modal formulae expressing coherence level restrictions are not first order definable. Finally, an inference (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • A solution to the completeness problem for weakly aggregative modal logic.Peter Apostoli & Bryson Brown - 1995 - Journal of Symbolic Logic 60 (3):832-842.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Wittgenstein on Incompleteness Makes Paraconsistent Sense.Francesco Berto - 2012 - In Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.), Paraconsistency: Logic and Applications. Dordrecht, Netherland: Springer. pp. 257--276.
    I provide an interpretation of Wittgenstein's much criticized remarks on Gödel's First Incompleteness Theorem in the light of paraconsistent arithmetics: in taking Gödel's proof as a paradoxical derivation, Wittgenstein was right, given his deliberate rejection of the standard distinction between theory and metatheory. The reasoning behind the proof of the truth of the Gödel sentence is then performed within the formal system itself, which turns out to be inconsistent. I show that the models of paraconsistent arithmetics (obtained via the Meyer-Mortensen (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the completeness of first degree weakly aggregative modal logics.Peter Apostoli - 1997 - Journal of Philosophical Logic 26 (2):169-180.
    This paper extends David Lewis' result that all first degree modal logics are complete to weakly aggregative modal logic by providing a filtration-theoretic version of the canonical model construction of Apostoli and Brown. The completeness and decidability of all first-degree weakly aggregative modal logics is obtained, with Lewis's result for Kripkean logics recovered in the case k = 1.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Model Theoretical Aspects of Weakly Aggregative Modal Logic.Jixin Liu, Yifeng Ding & Yanjing Wang - 2022 - Journal of Logic, Language and Information 31 (2):261-286.
    Weakly Aggregative Modal Logic ) is a collection of disguised polyadic modal logics with n-ary modalities whose arguments are all the same. \ has interesting applications on epistemic logic, deontic logic, and the logic of belief. In this paper, we study some basic model theoretical aspects of \. Specifically, we first give a van Benthem–Rosen characterization theorem of \ based on an intuitive notion of bisimulation. Then, in contrast to many well known normal or non-normal modal logics, we show that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Consequence as Preservation: Some Refinements.Bryson Brown - 2012 - In Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.), Paraconsistency: Logic and Applications. Dordrecht, Netherland: Springer. pp. 123--139.
    Download  
     
    Export citation  
     
    Bookmark   1 citation