Switch to: References

Add citations

You must login to add citations.
  1. Computational Complexity Theory and the Philosophy of Mathematics†.Walter Dean - 2019 - Philosophia Mathematica 27 (3):381-439.
    Computational complexity theory is a subfield of computer science originating in computability theory and the study of algorithms for solving practical mathematical problems. Amongst its aims is classifying problems by their degree of difficulty — i.e., how hard they are to solve computationally. This paper highlights the significance of complexity theory relative to questions traditionally asked by philosophers of mathematics while also attempting to isolate some new ones — e.g., about the notion of feasibility in mathematics, the $\mathbf{P} \neq \mathbf{NP}$ (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computing with Synthetic Protocells.Alexis Courbet, Franck Molina & Patrick Amar - 2015 - Acta Biotheoretica 63 (3):309-323.
    In this article we present a new kind of computing device that uses biochemical reactions networks as building blocks to implement logic gates. The architecture of a computing machine relies on these generic and composable building blocks, computation units, that can be used in multiple instances to perform complex boolean functions. Standard logical operations are implemented by biochemical networks, encapsulated and insulated within synthetic vesicles called protocells. These protocells are capable of exchanging energy and information with each other through transmembrane (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the computational complexity of ethics: moral tractability for minds and machines.Jakob Stenseke - 2024 - Artificial Intelligence Review 57 (105):90.
    Why should moral philosophers, moral psychologists, and machine ethicists care about computational complexity? Debates on whether artificial intelligence (AI) can or should be used to solve problems in ethical domains have mainly been driven by what AI can or cannot do in terms of human capacities. In this paper, we tackle the problem from the other end by exploring what kind of moral machines are possible based on what computational systems can or cannot do. To do so, we analyze normative (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Tractability and the computational mind.Rineke Verbrugge & Jakub Szymanik - 2018 - In Mark Sprevak & Matteo Colombo (eds.), The Routledge Handbook of the Computational Mind. Routledge. pp. 339-353.
    We overview logical and computational explanations of the notion of tractability as applied in cognitive science. We start by introducing the basics of mathematical theories of complexity: computability theory, computational complexity theory, and descriptive complexity theory. Computational philosophy of mind often identifies mental algorithms with computable functions. However, with the development of programming practice it has become apparent that for some computable problems finding effective algorithms is hardly possible. Some problems need too much computational resource, e.g., time or memory, to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ideals of rationality in dialogic.John Woods - 1988 - Argumentation 2 (4):395-408.
    Needed for such dialogue games as dialectic are appropriate standards of fairness and rationality. The rules of procedure of dialectic must describe a game playable by actual human participants. The present paper centers on certain idealizations of the dialectician that are not allowable.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On Qualitative Route Descriptions: Representation, Agent Models, and Computational Complexity.Matthias Westphal, Stefan Wölfl, Bernhard Nebel & Jochen Renz - 2015 - Journal of Philosophical Logic 44 (2):177-201.
    The generation of route descriptions is a fundamental task of navigation systems. A particular problem in this context is to identify routes that can easily be described and processed by users. In this work, we present a framework for representing route networks with the qualitative information necessary to evaluate and optimize route descriptions with regard to ambiguities in them. We identify different agent models that differ in how agents are assumed to process route descriptions while navigating through route networks and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Latent Structure of Dictionaries.Philippe Vincent-Lamarre, Alexandre Blondin Massé, Marcos Lopes, Mélanie Lord, Odile Marcotte & Stevan Harnad - 2016 - Topics in Cognitive Science 8 (3):625-659.
    How many words—and which ones—are sufficient to define all other words? When dictionaries are analyzed as directed graphs with links from defining words to defined words, they reveal a latent structure. Recursively removing all words that are reachable by definition but that do not define any further words reduces the dictionary to a Kernel of about 10% of its size. This is still not the smallest number of words that can define all the rest. About 75% of the Kernel turns (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Parameterized Complexity of Theory of Mind Reasoning in Dynamic Epistemic Logic.Iris van de Pol, Iris van Rooij & Jakub Szymanik - 2018 - Journal of Logic, Language and Information 27 (3):255-294.
    Theory of mind refers to the human capacity for reasoning about others’ mental states based on observations of their actions and unfolding events. This type of reasoning is notorious in the cognitive science literature for its presumed computational intractability. A possible reason could be that it may involve higher-order thinking. To investigate this we formalize theory of mind reasoning as updating of beliefs about beliefs using dynamic epistemic logic, as this formalism allows to parameterize ‘order of thinking.’ We prove that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Compactly representing utility functions using weighted goals and the max aggregator.Joel Uckelman & Ulle Endriss - 2010 - Artificial Intelligence 174 (15):1222-1246.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computational Complexity of Polyadic Lifts of Generalized Quantifiers in Natural Language.Jakub Szymanik - 2010 - Linguistics and Philosophy 33 (3):215-250.
    We study the computational complexity of polyadic quantifiers in natural language. This type of quantification is widely used in formal semantics to model the meaning of multi-quantifier sentences. First, we show that the standard constructions that turn simple determiners into complex quantifiers, namely Boolean operations, iteration, cumulation, and resumption, are tractable. Then, we provide an insight into branching operation yielding intractable natural language multi-quantifier expressions. Next, we focus on a linguistic case study. We use computational complexity results to investigate semantic (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Spatial state-action features for general games.Dennis J. N. J. Soemers, Éric Piette, Matthew Stephenson & Cameron Browne - 2023 - Artificial Intelligence 321 (C):103937.
    Download  
     
    Export citation  
     
    Bookmark  
  • Easy Solutions for a Hard Problem? The Computational Complexity of Reciprocals with Quantificational Antecedents.Fabian Schlotterbeck & Oliver Bott - 2013 - Journal of Logic, Language and Information 22 (4):363-390.
    We report two experiments which tested whether cognitive capacities are limited to those functions that are computationally tractable (PTIME-Cognition Hypothesis). In particular, we investigated the semantic processing of reciprocal sentences with generalized quantifiers, i.e., sentences of the form Q dots are directly connected to each other, where Q stands for a generalized quantifier, e.g. all or most. Sentences of this type are notoriously ambiguous and it has been claimed in the semantic literature that the logically strongest reading is preferred (Strongest (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Recursive Functions and Metamathematics: Problems of Completeness and Decidability, Gödel's Theorems.Rod J. L. Adams & Roman Murawski - 1999 - Dordrecht, Netherland: Springer Verlag.
    Traces the development of recursive functions from their origins in the late nineteenth century to the mid-1930s, with particular emphasis on the work and influence of Kurt Gödel.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Almost sure theories.James F. Lynch - 1980 - Annals of Mathematical Logic 18 (2):91.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • A language and a program for stating and solving combinatorial problems.Jena-Lonis Lauriere - 1978 - Artificial Intelligence 10 (1):29-127.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Infinite Versions of Some Problems from Finite Complexity Theory.Jeffry L. Hirst & Steffen Lempp - 1996 - Notre Dame Journal of Formal Logic 37 (4):545-553.
    Recently, several authors have explored the connections between NP-complete problems for finite objects and the complexity of their analogs for infinite objects. In this paper, we will categorize infinite versions of several problems arising from finite complexity theory in terms of their recursion theoretic complexity and proof theoretic strength. These infinite analogs can behave in a variety of unexpected ways.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • IDL-PMCFG, a Grammar Formalism for Describing Free Word Order Languages.François Hublet - 2022 - Journal of Logic, Language and Information 31 (3):327-388.
    We introduce _Interleave-Disjunction-Lock parallel multiple context-free grammars_ (IDL-PMCFG), a novel grammar formalism designed to describe the syntax of free word order languages that allow for extensive interleaving of grammatical constituents. Though interleaved constituents, and especially the so-called hyperbaton, are common in several ancient (Classical Latin and Greek, Sanskrit...) and modern (Hungarian, Finnish...) languages, these syntactic structures are often difficult to express in existing formalisms. The IDL-PMCFG formalism combines Seki et al.’s parallel multiple context-free grammars (PMCFG) with Nederhof and Satta’s IDL (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Concrete Digital Computation: What Does it Take for a Physical System to Compute? [REVIEW]Nir Fresco - 2011 - Journal of Logic, Language and Information 20 (4):513-537.
    This paper deals with the question: what are the key requirements for a physical system to perform digital computation? Time and again cognitive scientists are quick to employ the notion of computation simpliciter when asserting basically that cognitive activities are computational. They employ this notion as if there was or is a consensus on just what it takes for a physical system to perform computation, and in particular digital computation. Some cognitive scientists in referring to digital computation simply adhere to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Towards feasible solutions of the tautology problem.Bradford Dunham & Hao Wang - 1976 - Annals of Mathematical Logic 10 (2):117-154.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Towards a theory of mathematical argument.Ian J. Dove - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), Foundations of Science. Springer. pp. 291--308.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Towards a theory of mathematical argument.Ian J. Dove - 2009 - Foundations of Science 14 (1-2):136-152.
    In this paper, I assume, perhaps controversially, that translation into a language of formal logic is not the method by which mathematicians assess mathematical reasoning. Instead, I argue that the actual practice of analyzing, evaluating and critiquing mathematical reasoning resembles, and perhaps equates with, the practice of informal logic or argumentation theory. It doesn’t matter whether the reasoning is a full-fledged mathematical proof or merely some non-deductive mathematical justification: in either case, the methodology of assessment overlaps to a large extent (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Generalized quantifiers.Dag Westerståhl - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Computability and complexity.Neil Immerman - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Assyrian Merchants meet Nuclear Physicists: History of the Early Contributions from Social Sciences to Computer Science. The Case of Automatic Pattern Detection in Graphs (1950s-1970s).Sébastien Plutniak - 2021 - Interdisciplinary Science Reviews 46 (4):547-568.
    Community detection is a major issue in network analysis. This paper combines a socio-historical approach with an experimental reconstruction of programs to investigate the early automation of clique detection algorithms, which remains one of the unsolved NP-complete problems today. The research led by the archaeologist Jean-Claude Gardin from the 1950s on non-numerical information and graph analysis is retraced to demonstrate the early contributions of social sciences and humanities. The limited recognition and reception of Gardin's innovative computer application to the humanities (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the behavior of tile assembly system at high temperatures.Shinnosuke Seki & Yasushi Okuno - 2012 - In S. Barry Cooper (ed.), How the World Computes. pp. 549--559.
    Download  
     
    Export citation  
     
    Bookmark