Switch to: References

Add citations

You must login to add citations.
  1. Scientific Inference with Interpretable Machine Learning: Analyzing Models to Learn About Real-World Phenomena.Timo Freiesleben, Gunnar König, Christoph Molnar & Álvaro Tejero-Cantero - 2024 - Minds and Machines 34 (3):1-39.
    To learn about real world phenomena, scientists have traditionally used models with clearly interpretable elements. However, modern machine learning (ML) models, while powerful predictors, lack this direct elementwise interpretability (e.g. neural network weights). Interpretable machine learning (IML) offers a solution by analyzing models holistically to derive interpretations. Yet, current IML research is focused on auditing ML models rather than leveraging them for scientific inference. Our work bridges this gap, presenting a framework for designing IML methods—termed ’property descriptors’—that illuminate not just (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Explanatory Role of Machine Learning in Molecular Biology.Fridolin Gross - forthcoming - Erkenntnis:1-21.
    The philosophical debate around the impact of machine learning in science is often framed in terms of a choice between AI and classical methods as mutually exclusive alternatives involving difficult epistemological trade-offs. A common worry regarding machine learning methods specifically is that they lead to opaque models that make predictions but do not lead to explanation or understanding. Focusing on the field of molecular biology, I argue that in practice machine learning is often used with explanatory aims. More specifically, I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Understanding climate change with statistical downscaling and machine learning.Julie Jebeile, Vincent Lam & Tim Räz - 2020 - Synthese (1-2):1-21.
    Machine learning methods have recently created high expectations in the climate modelling context in view of addressing climate change, but they are often considered as non-physics-based ‘black boxes’ that may not provide any understanding. However, in many ways, understanding seems indispensable to appropriately evaluate climate models and to build confidence in climate projections. Relying on two case studies, we compare how machine learning and standard statistical techniques affect our ability to understand the climate system. For that purpose, we put five (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Machines Learn Better with Better Data Ontology: Lessons from Philosophy of Induction and Machine Learning Practice.Dan Li - 2023 - Minds and Machines 33 (3):429-450.
    As scientists start to adopt machine learning (ML) as one research tool, the security of ML and the knowledge generated become a concern. In this paper, I explain how supervised ML can be improved with better data ontology, or the way we make categories and turn information into data. More specifically, we should design data ontology in such a way that is consistent with the knowledge that we have about the target phenomenon so that such ontology can help us make (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Human Abductive Cognition Vindicated: Computational Locked Strategies, Dissipative Brains, and Eco-Cognitive Openness.Lorenzo Magnani - 2022 - Philosophies 7 (1):15.
    _Locked_ and _unlocked_ strategies are illustrated in this article as concepts that deal with important cognitive aspects of deep learning systems. They indicate different inference routines that refer to poor (locked) to rich (unlocked) cases of creative production of creative cognition. I maintain that these differences lead to important consequences when we analyze computational deep learning programs, such as AlphaGo/AlphaZero, which are able to realize various types of abductive hypothetical reasoning. These programs embed what I call locked abductive strategies, so, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Values in climate modelling: testing the practical applicability of the Moral Imagination ideal.Frida A.-M. Bender, Sabine Undorf & Karoliina Pulkkinen - 2022 - European Journal for Philosophy of Science 12 (4):1-18.
    There is much debate on how social values should influence scientific research. However, the question of practical applicability of philosophers’ normative proposals has received less attention. Here, we test the attainability of Matthew J. Brown’s (2020) Moral Imagination ideal (MI ideal), which aims to help scientists to make warranted value-judgements through reflecting on goals, options, values, and stakeholders of research. Here, the tools of the MI ideal are applied to a climate modelling setting, where researchers are developing aerosol-cloud interaction (ACI) (...)
    Download  
     
    Export citation  
     
    Bookmark