Switch to: References

Add citations

You must login to add citations.
  1. Peano's axioms in their historical context.Michael Segre - 1994 - Archive for History of Exact Sciences 48 (3-4):201-342.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Peano e la filosofia della matematica.Enrico Pasini - 2004 - In Elisa Gallo - Livia Giacardi - Clara Silvia Roero (ed.), Conferenze E Seminari 2003-2004. Associazione Subalpina Mathesis. pp. 203-220.
    It is well known that Peano had a reluctant attitude towards philosophy, including philosophy of mathematics. Some scholars have suggested the existence of an 'implicit' philosophy, without being able to describe it. In this paper a first attempt is done to reconstruct, if not a general philosophy of mathematics, at least Peano' epistemology of mathematics and its relation to contemporary positions.
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege, Peano and the Interplay between Logic and Mathematics.Joan Bertran-San Millán - 2021 - Philosophia Scientiae 25 (1):15-34.
    In contemporary historical studies, Peano is usually included in the logical tradition pioneered by Frege. In this paper, I shall first demonstrate that Frege and Peano independently developed a similar way of using logic for the rigorous expression and proof of mathematical laws. However, I shall then suggest that Peano also used his mathematical logic in such a way that anticipated a formalisation of mathematical theories which was incompatible with Frege’s conception of logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Peano on Symbolization, Design Principles for Notations, and the Dot Notation.Dirk Schlimm - 2021 - Philosophia Scientiae 25:95-126.
    Peano was one of the driving forces behind the development of the current mathematical formalism. In this paper, we study his particular approach to notational design and present some original features of his notations. To explain the motivations underlying Peano's approach, we first present his view of logic as a method of analysis and his desire for a rigorous and concise symbolism to represent mathematical ideas. On the basis of both his practice and his explicit reflections on notations, we discuss (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Classes, why and how.Thomas Schindler - 2019 - Philosophical Studies 176 (2):407-435.
    This paper presents a new approach to the class-theoretic paradoxes. In the first part of the paper, I will distinguish classes from sets, describe the function of class talk, and present several reasons for postulating type-free classes. This involves applications to the problem of unrestricted quantification, reduction of properties, natural language semantics, and the epistemology of mathematics. In the second part of the paper, I will present some axioms for type-free classes. My approach is loosely based on the Gödel–Russell idea (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations