Switch to: References

Add citations

You must login to add citations.
  1. On the Depth of Gödel’s Incompleteness Theorems.Yong Cheng - forthcoming - Philosophia Mathematica.
    ABSTRACT We use Gödel’s incompleteness theorems as a case study for investigating mathematical depth. We examine the philosophical question of what the depth of Gödel’s incompleteness theorems consists in. We focus on the methodological study of the depth of Gödel’s incompleteness theorems, and propose three criteria to account for the depth of the incompleteness theorems: influence, fruitfulness, and unity. Finally, we give some explanations for our account of the depth of Gödel’s incompleteness theorems.
    Download  
     
    Export citation  
     
    Bookmark  
  • Existentially closed structures and gödel's second incompleteness theorem.Zofia Adamowicz & Teresa Bigorajska - 2001 - Journal of Symbolic Logic 66 (1):349-356.
    We prove that any 1-closed (see def 1.1) model of the Π 2 consequences of PA satisfies ¬Cons PA which gives a proof of the second Godel incompleteness theorem without the use of the Godel diagonal lemma. We prove a few other theorems by the same method.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Recursive Functions and Metamathematics: Problems of Completeness and Decidability, Gödel's Theorems.Rod J. L. Adams & Roman Murawski - 1999 - Dordrecht, Netherland: Springer Verlag.
    Traces the development of recursive functions from their origins in the late nineteenth century to the mid-1930s, with particular emphasis on the work and influence of Kurt Gödel.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The incompleteness theorems after 70 years.Henryk Kotlarski - 2004 - Annals of Pure and Applied Logic 126 (1-3):125-138.
    We give some information about new proofs of the incompleteness theorems, found in 1990s. Some of them do not require the diagonal lemma as a method of construction of an independent statement.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Boolos-style proofs of limitative theorems.György Serény - 2004 - Mathematical Logic Quarterly 50 (2):211.
    Boolos's proof of incompleteness is extended straightforwardly to yield simple “diagonalization-free” proofs of some classical limitative theorems of logic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On proofs of the incompleteness theorems based on Berry's paradox by Vopěnka, Chaitin, and Boolos.Makoto Kikuchi, Taishi Kurahashi & Hiroshi Sakai - 2012 - Mathematical Logic Quarterly 58 (4-5):307-316.
    By formalizing Berry's paradox, Vopěnka, Chaitin, Boolos and others proved the incompleteness theorems without using the diagonal argument. In this paper, we shall examine these proofs closely and show their relationships. Firstly, we shall show that we can use the diagonal argument for proofs of the incompleteness theorems based on Berry's paradox. Then, we shall show that an extension of Boolos' proof can be considered as a special case of Chaitin's proof by defining a suitable Kolmogorov complexity. We shall show (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On constructivity and the Rosser property: a closer look at some Gödelean proofs.Saeed Salehi & Payam Seraji - 2018 - Annals of Pure and Applied Logic 169 (10):971-980.
    The proofs of Kleene, Chaitin and Boolos for Gödel's First Incompleteness Theorem are studied from the perspectives of constructivity and the Rosser property. A proof of the incompleteness theorem has the Rosser property when the independence of the true but unprovable sentence can be shown by assuming only the (simple) consistency of the theory. It is known that Gödel's own proof for his incompleteness theorem does not have the Rosser property, and we show that neither do Kleene's or Boolos' proofs. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The shortest definition of a number in Peano arithmetic.Dev K. Roy - 2003 - Mathematical Logic Quarterly 49 (1):83-86.
    The shortest definition of a number by a first order formula with one free variable, where the notion of a formula defining a number extends a notion used by Boolos in a proof of the Incompleteness Theorem, is shown to be non computable. This is followed by an examination of the complexity of sets associated with this function.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On Berry's paradox and nondiagonal constructions.Dev K. Roy - 1999 - Complexity 4 (3):35-38.
    Download  
     
    Export citation  
     
    Bookmark  
  • On Formalization of Model-Theoretic Proofs of Gödel's Theorems.Makoto Kikuchi & Kazuyuki Tanaka - 1994 - Notre Dame Journal of Formal Logic 35 (3):403-412.
    Within a weak subsystem of second-order arithmetic , that is -conservative over , we reformulate Kreisel's proof of the Second Incompleteness Theorem and Boolos' proof of the First Incompleteness Theorem.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Liar-type Paradoxes and the Incompleteness Phenomena.Makoto Kikuchi & Taishi Kurahashi - 2016 - Journal of Philosophical Logic 45 (4):381-398.
    We define a liar-type paradox as a consistent proposition in propositional modal logic which is obtained by attaching boxes to several subformulas of an inconsistent proposition in classical propositional logic, and show several famous paradoxes are liar-type. Then we show that we can generate a liar-type paradox from any inconsistent proposition in classical propositional logic and that undecidable sentences in arithmetic can be obtained from the existence of a liar-type paradox. We extend these results to predicate logic and discuss Yablo’s (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Trend of Logic and Foundation of Mathematics in Japan in 1991 to 1996.Yuzuru Kakuda, Kanji Namba & Nobuyoshi Motohashi - 1997 - Annals of the Japan Association for Philosophy of Science 9 (2):95-110.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Heterologicality and Incompleteness.Cezary Cieśliński - 2002 - Mathematical Logic Quarterly 48 (1):105-110.
    We present a semantic proof of Gödel's second incompleteness theorem, employing Grelling's antinomy of heterological expressions. For a theory T containing ZF, we define the sentence HETT which says intuitively that the predicate “heterological” is itself heterological. We show that this sentence doesn't follow from T and is equivalent to the consistency of T. Finally we show how to construct a similar incompleteness proof for Peano Arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Current Research on Gödel’s Incompleteness Theorems.Yong Cheng - 2021 - Bulletin of Symbolic Logic 27 (2):113-167.
    We give a survey of current research on Gödel’s incompleteness theorems from the following three aspects: classifications of different proofs of Gödel’s incompleteness theorems, the limit of the applicability of Gödel’s first incompleteness theorem, and the limit of the applicability of Gödel’s second incompleteness theorem.
    Download  
     
    Export citation  
     
    Bookmark   4 citations